Analysis of SO$_2$ Measurement Accuracy by Multiwavelength DIAL

Taro Denshi* a) Member, Hanako Denki** Non-member

(Manuscript received Jan. 00, 2000, revised May 00, 2000)

This paper presents two multiwavelength methods to improve the accuracy of a DIAL system for measuring SO$_2$ in the lower atmosphere: a dual-DIAL method using three or four wavelengths, and a curvefitting method using five wavelengths. By the selection of appropriate wavelengths, these methods can eliminate the effects of ozone and aerosols. Since there is no significant difference in accuracy between the four wavelength dual-DIAL and curvefit methods, the former is advantageous for SO$_2$ detection in view of the measurement and data processing speeds.

Keywords: laser radar, SO$_2$, DIAL, multiwavelength differential absorption

1. Introduction

LIDAR (Light Detection And Ranging) has been used for measurement of atmospheric pollutants by Raman scattering, resonant fluorescence, and differential absorption (1). Fig. 1 is a schematic diagram of a LIDAR system. This apparatus transmits laser radiation into the atmosphere, collects light backscattered by atmospheric molecules and particulates using a receiving telescope, and converts it to an electric signal using a photodetector such as a photomultiplier tube. The measurement height is obtained from the time delay between illumination and detection. Therefore, to measure the height profile one measures the received photon counts as a function of time delay relative to illumination using a multichannel scaler. The measurement range resolution ΔR is determined by the time width of the channel $\Delta t = 2\Delta R/c$, where c is the speed of light. The smaller the time Δt, the better the range resolution, but the photon count per channel becomes less and the relative error larger.

This paper examines DIAL (Differential Absorption Lidar), a method to obtain the concentration profile of the measurement target molecule from the backscatter intensity at two or more illumination wavelengths. The measurement target is atmospheric SO$_2$, which is a substance causing acid rain. Until now, measurements of atmospheric SO$_2$ have been limited mainly to cases of localized SO$_2$ concentrations, e.g. smokestack exhaust and volcanic eruptions (2)-(4). In these cases, the SO$_2$ concentration is over 100 ppb, therefore the measurement was relatively easy and the measurement accuracy was not a problem. However, when measuring SO$_2$ in the ambient atmosphere, its concentration is of ppb order, and the measurement accuracy becomes an issue. We performed a theoretical analysis of the measurement accuracy of conventional two-wavelength DIAL, and indicated the necessity of eliminating effects due to ozone and other substances which cause measurement error (5). In this paper, we examined the measurement accuracy of dual-DIAL methods using three or four wavelengths (consisting of a combination of two two-wavelength DIAL pairs) and a curvefit method using five wavelengths.

2. Multiwavelength Differential Absorption

2.1 Fundamentals of DIAL

The received energy for a LIDAR is given by the following LIDAR equation:

$$E(R, \lambda) = \frac{E_0}{\lambda^4 R^2} \beta_{1}(R) \times \exp \left[-2 \int_{0}^{R} \frac{\Delta R}{c} (\alpha_{o} + \alpha_{c}) dR \right]$$

….. (1)

Here $E(R, \lambda_i)$ is the backscattered photon energy received from range between R and $R+\Delta R$ from the illumination laser, λ_i the illumination wavelength, E_0 the illumination energy, η the optical efficiency of the receiver, $\beta_{1}(R)$ the backscattering coefficient of the measured target molecule, α_{o} the optical absorption coefficient of ozone, α_{c} the optical absorption coefficient of aerosols.

Conclusion

In this paper, we calculated the error due to ozone and aerosols in measurement of SO$_2$ concentrations of ppb order using DIAL. The statistical error of the return signal and background noise can…
be overcome by improving the system constant (laser output, receiver area, optical efficiency of the receiver). On the other hand, systematic errors due to ozone and aerosols are inherent in the measurement method, and cannot be eliminated solely by improving the system constant. In conventional two-wavelength DIAL, the systematic error is over 1.5 ppb and the measurement accuracy is insufficient. In order to improve the measurement accuracy, a multiwavelength differential absorption method using three or more wavelengths is effective. In this paper we have considered dual-DIAL methods using three or four wavelengths and a curvefit method using five wavelengths, and indicated that the measurement errors due to ozone and aerosols can be reduced relative to conventional DIAL or eliminated. When these methods are compared, four-wavelength dual-DIAL is superior in view of measurement accuracy and measurement/processing speeds.

Acknowledgement
This research was supported by aaaa.

References

Taro Denshi
(Non-member) He received a Ph.D. degree in electrical engineering from Electric University in 1984, and is presently a Chief engineer at Kagoshima Electron Corp. She has worked on analysis of electromagnetic flow coupler pumps, development of Cherenkov radiation monitors for nuclear inspection, and development of laser beam intensity transformation techniques. Japan Applied Physics Society, American Physical Society member.

Hanako Denki
(Non-member) She received a Ph.D. degree in electrical engineering from Electric University in 1984, and is presently a Chief engineer at Kagoshima Electron Corp. She has worked on analysis of electromagnetic flow coupler pumps, development of Cherenkov radiation monitors for nuclear inspection, and development of laser beam intensity transformation techniques. Japan Applied Physics Society, Laser Society of Japan, Optical Society of America member.