The 8th Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems

IEEE NEMS2013 Program

April 7-10, 2013

Suzhou China
Organizers & Sponsors

Institute of Electrical and Electronics Engineers

Chinese International NEMS Society

IEEE Nanotechnology Council

National Natural Science Foundation of China (NSFC)

Science and Technology on Micro/Nanofabrication Laboratory

City University of Hong Kong

Peking University

Soochow University

Nanopolis Suzhou

Science and Technology on Microsystem Laboratory

Science and Technology on Micro/Nanofabrication Laboratory

Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences

CHINANO

Suzhou Institute of Nano-Tech and Nano-Bionics(SINANO), Chinese Academy of Sciences

Suzhou Industrial Park (SIP)

University of California, Los Angeles,(UCLA), USA

MEMS Journal Inc.
Table of Contents

Important Information...3
Welcome Message...4
Program at a Glance..5
Venue Floor Plan ..8
Technical Program Index..9
Conference Committee..10
Conference Awards ...14
Invited Speakers ..15
Technical Program..24

Day 1: Monday, April 8 ...24
- Opening Ceremony 1A1 ..24
- Plenary Session 1A2 ...24
- Keynote Session 1A3 ...24
- Keynote Session 1A4 ...25
- Parallel Oral Session 1-1 (1B1/1C1/1D1/1E1) ..25
- Parallel Oral Session 1-2 (1B2/1C2/1D2/1E2) ..30
- Parallel Oral Session 1-3 (1B3/1C3/1D3/1E3) ..34
- Poster and Exhibition 1 (1P1-100) ...60

Day 2: Tuesday, April 9 ...39
- Plenary Session 2A1 ...39
- Keynote Session 2A2 ...39
- Keynote Session 2A3 ...39
- Parallel Oral Session 2-1 (2B1/2C1/2D1/2E1) ..40
- Parallel Oral Session 2-2 (2B2/2C2/2D2/2E2) ..45
- Poster and Exhibition 2 (2P1-103) ...79

Day 3: Wednesday, April 10 ..50
- Plenary Session 3A1 ...50
- Keynote Session 3A2 ...50
- Keynote Session 3A3 ...51
- Parallel Oral Session 3-1 (3B1/3C1/3D1/3E1) ..51
- Parallel Oral Session 3-2 (3B2/3C2/3D2/3E2) ..55

Conference Exhibitors ...99
Map & Direction ...100
Hotel Information ...102
Travel Information ...103
Technical Tour...104
Contact Information ..105
MEMS Journal Inc. ...106
Micro & Nano Letters ..107
NEMS2014 CFP
Important Information

Registration
Day0: Sunday, April 7 ... 14:30-19:30
Day1: Monday, April 8 ... 8:30-18:00
Day2: Tuesday, April 9 ... 8:30-18:00

Name Badges
All attendees must wear their name badges at all times to gain admission to all conference sessions, exhibitions, receptions and other conference events.

Downloading and Turn in the Slides
For technical reasons, it is not possible to use your own computer for Oral Presentation. Laptop (PC with Microsoft Windows), a laser pointer and microphone will be provided. You MUST COPY your presentation PPT to Conference PC at the Secretary Room (M1) at least 4 hours before your presentation.

The following points are very important:
- Your PPT file should be submitted according to the session it belongs to. Every file collection desk has a sign with session numbers at Secretary Room (M1). Please be sure to submit your presentation at the right collection desk with your session number.
- Please name your PPT file as your Paper Number (Paper ID).ppt, such as 1C2-1(356).ppt, and be sure your PPT file is of Microsoft Office 2003 or 2007 Version. Please leave us your name and contact method (e.g. hotel room number). If your file can not work well, we will contact with you.
- If the videos imbedded in your PPT file can not be worked, please convert the videos format (such as .avi, .mpg, .RMVB) into .WMV format.

Meeting Room Protocol
Every effort will be made to ensure that all sessions start and end on time. Speakers and attendees are asked to work together to achieve this. This may mean having to cut short a valuable discussion; however, conference organizers request your cooperation for the benefit of all attendees.

Journal Publication
For accepted abstracts, the full paper will be recommended to be published in Nanobiotechnology, Micro & Nano Letters and Journal of Applied Science and Engineering after the conference. All submissions will be subject to the journal’s regular peer-review procedures. For more details, please click their websites.
- IET Nanobiotechnology : SCI, 5-year Impact Factor - 2.3
- IET Micro & Nano Letters : SCI, 5-year Impact Factor - 1.06
- Journal of Applied Science and Engineering : EI

Internet Service
There will be free wireless internet service provided by the Conference. The account is “worldhotel”, no Password.
Welcome Message

To the Participants of the 8th IEEE-NEMS conference,

Welcome to “Paradise on Earth” ---- Suzhou! Built in 514 BC, Suzhou is an ancient city with 2500 years’ history, located in the center of Yangtze Delta. It is renowned for the classic gardens, canals, silks, lakes, operas, legends and museums. In recently 20 years’ fast-growing, Suzhou is changing her ancient face to a modern city and high-tech harbor, its GPD ranks Top 5 in the cities of mainland China. Suzhou Industry Park (SIP) is becoming the new paradise of High-Tech industries, attracts 30% of the Top 500 industries to set up base and over 14000 innovation companies from all over the world. That’s why we chose Suzhou to host The 2013 IEEE International Conference on Nano/Micro Engineered and Molecular Systems (IEEE-NEMS 2013) from April 7-10, 2013.

IEEE NEMS conference is focused on progress in Micro-Nano-Molecular fields, will bring together leading scholars and researchers world-wide to disseminate their most recent and advanced findings in relative areas. Based on great efforts from all committee, IEEE-NEMS 2013 has received more than 500 submissions from over 30 countries and regions worldwide. Of these, we will arrange a 3 days program with 3 Plenary speech, 12 keynote speech, 33 invited speech, 100 oral presentation and 203 posters. Also about 10 exhibitors will show their new production in our conference. We offer all of you 3 gifts in these 3 exciting day,

1. Top Plenary & Invited Speakers worldwide
2. Frontier of Micro-Nano Science & Technologies
3. Platform of Academy & Commercialization & Friendship

We would like to thank all participants of this conference for supporting the IEEE-NEMS conference series and for becoming a part of this fast-growing high-tech community. In particular, we extend our thanks to the Technical Program Committee members, who helped to review a large number of papers and finalized the program and best paper candidates. Not only TPC, all of you, in technical, organizing, sponsoring or consulting, are the key factors to make this conference successful. Thank all of you!

Finally, we hope you enjoy the IEEE-NEMS 2013 and your stay in Suzhou!

General Chair: Haixia (Alice) Zhang
Peking University, China

Co-Chair: Chang-Jin “CJ” Kim
University of California, Los Angeles (UCLA), U.S.A.

Co-Chair: Lining Sun
SooChow University, China
Program at a Glance

Conference Venue: Dushu Lake Hotel http://www.ieee-nems2013.org

Day0: Sunday, April 7, 2013

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>14:30-19:00</td>
<td>Registration (Till April 9th 6pm in Registration Desk)</td>
</tr>
<tr>
<td>18:00-20:00</td>
<td>Welcome Reception</td>
</tr>
<tr>
<td>20:00-21:30</td>
<td>IEEE-NEMS Organizers and Speakers Dinner Meeting (by invitation only)</td>
</tr>
</tbody>
</table>

Day1: Monday, April 8, 2013

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:30-8:45</td>
<td>1A1 Opening Ceremony (Watson Auditorium)</td>
</tr>
<tr>
<td></td>
<td>Haixia (Alice) Zhang, Lining Sun, Yuelin Wang, Zheng Cui</td>
</tr>
<tr>
<td>8:45-9:30</td>
<td>1A2 Plenary Speaker 1: Dr. Jing Cheng (Watson Auditorium)</td>
</tr>
<tr>
<td></td>
<td>Chair: Haixia (Alice) Zhang</td>
</tr>
<tr>
<td>9:30-10:30</td>
<td>1A3 Keynote Speaker 1-2: Martin Wegener & Nicholas Xuanlai Fang</td>
</tr>
<tr>
<td></td>
<td>Chair: Zhihong Li & Osamu Tabata</td>
</tr>
<tr>
<td>10:30-11:00</td>
<td>Coffee Break and Exhibition</td>
</tr>
<tr>
<td>11:00-12:00</td>
<td>1A4 Keynote Speaker 3-4: Gilbert C. Walker & Wan-Lin Guo</td>
</tr>
<tr>
<td></td>
<td>Chair: Gوبrecht Jens & Zheng Cui</td>
</tr>
<tr>
<td>12:00-13:00</td>
<td>Conference Lunch (Grand Ball Room)</td>
</tr>
<tr>
<td>13:00-14:15</td>
<td>1B1(Room F1) 1C1(Room M2) 1D1(Room M3) 1E1(Room EIII)</td>
</tr>
<tr>
<td>Topic</td>
<td>Micro/nano Fabrication & Metrology 1</td>
</tr>
<tr>
<td>Chair &Co-Chair</td>
<td>Xiaojing Zhang & Weizheng Yuan & Chengkuo Lee</td>
</tr>
<tr>
<td>Paper ID</td>
<td>327, 285, 308, 326, 197</td>
</tr>
<tr>
<td>14:15-15:30</td>
<td>1B2(Room F1) 1C2(Room M2) 1D2(Room M3) 1E2(Room EIII)</td>
</tr>
<tr>
<td>Topic</td>
<td>Micro/nano Fabrication & Metrology 2</td>
</tr>
<tr>
<td>Chair &Co-Chair</td>
<td>Xiongying Ye & Slaughter Gymama & Chengkuo Lee</td>
</tr>
<tr>
<td>Paper ID</td>
<td>375, 341, 365, 336, 504</td>
</tr>
</tbody>
</table>
Day2: Tuesday, April 9, 2013

8:30-9:15
2A1 Plenary Speaker 1: Dr. Albert (“Al”) P. Pisano (Watson Auditorium)
- Chair: Zhaoying Zhou

9:15-10:15
2A2 Keynote Speaker 5-6: David R. S. Cumming & Isao Shimoyama
- Chair: Tie Li & Juergen Brugger

10:15-10:45
Coffee Break and Exhibition

10:45-11:45
2A3 Keynote Speaker 7-8: Mark G. Allen & Hongbo Sun
- Chair: Hans Zappe & Yao-Joe Yang

11:45-13:00
Conference Lunch (Grand Ball Room)

13:00-15:00
Poster and Exhibition 2 (2P, Room EII): Poster Number 2P1-2P103

15:00-16:30

<table>
<thead>
<tr>
<th>Topic</th>
<th>2B1(Room F1)</th>
<th>2C1(Room M2)</th>
<th>2D1(Room M3)</th>
<th>2E1(Room EIII)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chair</td>
<td>Kean Aw</td>
<td>Yu-Cheng Lin</td>
<td>Linsen Chen</td>
<td>Haixiong Ge</td>
</tr>
<tr>
<td>&Co-Chair</td>
<td>& Qiangbin Wang</td>
<td>& Yi-Kuen Lee</td>
<td>& Lungjie Yang</td>
<td>& Tingrui Pan</td>
</tr>
</tbody>
</table>

16:30-18:00
2B2(Room F1)
- Micro/nano Sensors, Actuators & Systems 2
- Chair: Wibool Piyawattanametha & Tianling Ren
- &Co-Chair: Lishuang Feng & Chenyang Xue
- Paper ID: 127,184,198,256,275,305
- 443,325,330,339,421,424
- 557,463,555,546
- 50(IS-2),110,147,167,246,252
Day 3: Wednesday, April 10, 2013

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:30-9:15</td>
<td>3A1 Plenary Speaker 3: Prof. Zhonglin Wang (Watson Auditorium)</td>
</tr>
<tr>
<td></td>
<td>Chair: Ning Xi</td>
</tr>
<tr>
<td>9:15-10:15</td>
<td>3A2 Keynote Speaker 9-10: Taesong Kim & Gwobin Lee</td>
</tr>
<tr>
<td></td>
<td>Chair: Wen J. Li & Kukjin Chun</td>
</tr>
<tr>
<td>10:15-10:45</td>
<td>Coffee Break and Exhibition</td>
</tr>
<tr>
<td>10:45-11:45</td>
<td>3A3 Keynote Speaker 11-12: Xinxin Li & Jianxin Wu</td>
</tr>
<tr>
<td></td>
<td>Chair: Fangang Tseng & Lining Sun</td>
</tr>
<tr>
<td>11:45-13:00</td>
<td>Conference Lunch (Grand Ball Room)</td>
</tr>
<tr>
<td>13:00-14:30</td>
<td>3B1(Room F1): Nanomedicine</td>
</tr>
<tr>
<td></td>
<td>3C1(Room M2): Nanobiology, Nano-bio-informatics 2</td>
</tr>
<tr>
<td></td>
<td>3D1(Room M3): Cross-Starit Invited Session 6</td>
</tr>
<tr>
<td></td>
<td>3E1(Room EIII): Micro/nanofluidics & Bio Chips 2</td>
</tr>
<tr>
<td></td>
<td>Chair: Litao Sun & Wen Li</td>
</tr>
<tr>
<td></td>
<td>& Co-Chair: Xianting Ding & Che-Hsin Lin</td>
</tr>
<tr>
<td>Paper ID</td>
<td>548(IS-3), 190, 319</td>
</tr>
<tr>
<td></td>
<td>3C2(Room M2): Integration & Application of M/NEMS</td>
</tr>
<tr>
<td></td>
<td>3D2(Room M3): Cross-Starit Invited Session 7</td>
</tr>
<tr>
<td></td>
<td>3E2(Room EIII): Flexible MEMS, Sensors and Printed Electronics 2</td>
</tr>
<tr>
<td></td>
<td>Chair: Wenjiang Shen & Dongfang Wang</td>
</tr>
<tr>
<td></td>
<td>& Co-Chair: Lianqiang Liu & Haidong Liu</td>
</tr>
<tr>
<td>Paper ID</td>
<td>322, 324, 381, 393</td>
</tr>
<tr>
<td>15:45-17:30</td>
<td>Technical Tour</td>
</tr>
<tr>
<td>18:00-20:00</td>
<td>Farewell Party</td>
</tr>
</tbody>
</table>

Technical Tour

Farewell Party
Venue Floor Plan
Technical Program Index

In the Technical Program, each paper has a unique number before the title, which clearly indicates when and where the paper is presented.

Typical Oral Paper Number: 1C1-1

- The first number (i.e., 1) indicates the presentation day of the conference:
 - 1 = Day1(Monday)
 - 2 = Day2(Tuesday)
 - 3 = Day3(Wednesday)
- The second letter (i.e., C) indicates what session is being presented.
 - Session A Room: Watson Auditorium;
 - Session B Room: F1;
 - Session C Room: M2;
 - Session D Room: M3;
 - Session E Room: EIII
- The third number (i.e., 1) shows what period of the paper will be. There are three periods in Day1, two periods in Day2 and Day3.
- The number after the short line (-) shows the number of the paper in the session in sequence starting at 1.

Typical Poster Paper Number: 1P-013

- The first number (i.e., 1) indicates the presentation day of the conference:
 - 1 = Day1(Monday)
 - 2 = Day2(Tuesday)
- The second letter (i.e., P) indicates what session is being presented, i.e., Poster and Exhibition session.
- The number after the short line (-) shows the number of the paper in the session in sequence starting at 1.

To assist you with finding the paper in the Technical Program, we have provided the Paper ID (such as 120, 148) following each paper title.

Abbreviation & Presentation Time

Invited Speakers: PS- Plenary Speaker(45min); KS- Keynote Speaker(30min);

 IS-Invited Speaker(20min); CS- Cross-Starit Invited Speaker(20min).

Oral Presentations: Best Conference / Student Paper/CM Ho Award: 15min; Other Oral presentation: 12min.

 Author: Copy Presentation PPT to conference computer 4hours before your session in Secretary Room (M1).

Posters: Poster Size: 90cm(width)*120cm(height), every poster should be showed by numbers on time:

 Day1 Poster(1P1-1P100): 17:00-19:00 (Author: Put poster on before 17pm, and remove after 19pm).
 Day2 Poster(2P1-2P103): 13:00-15:00 (Author: Put poster on before 13pm, and remove after 15pm).
Conference Committee

IEEE NEMS2013 Committee

Honorary Chair: Zhaoying Zhou, Tsinghua University, China
General Chair: Haixia (Alice) Zhang, Peking University, China
 Co-Chair: Chang-Jin "CJ" Kim, University of California, Los Angeles, (UCLA), USA
 Co-Chair: Lining Sun, Soochow University, China
Technical Program Chair: Yuelin Wang, Shanghai Institute of Microsystem and Information Technology, CAS, China
 Europe Co-Chair: Lina Sarro, Delft University of Technology, Netherlands
 Asia/Pacific Co-Chair: Wen J. Li, City University of Hong Kong, Hong Kong
 America Co-Chair: Yitshak Zohar, University of Arizona, USA
Organizing Chair: Zheng Cui, Suzhou Institute of Nanotech and Nanobionics, CAS
 Co-Chair: Hans Zappe, IMTEK, Germany
 Co-Chair: Xijun Zhang, Suzhou Nanopolis, China

International Advisory Committee

Chair: Tzyh-Jong Tan, Washington University, USA
Members: Chihming Ho, University of California, Los Angeles, (UCLA), USA
 Masayoshi Esashi, Tohoku University, Japan
 Meyya Meyyappan, NASA AMES, USA
 Nicolas F. de Rooij, EPFL, Switzerland
 Toshio Fukuda, Nagoya University, Japan

IEEE NEMS Steering Committee

Chair: Ning Xi, Michigan State University, USA
Members: Haixia (Alice) Zhang, Peking University, China
 Daoheng Sun, Xiamen University, China
 Wen J. Li, City University of Hong Kong, Hong Kong
 Gwo-Bin Vincent Lee, National Tsing Hua University, Taiwan
 Osamu Tabata, Kyoto University, Japan
 Yu-Chong Tai, California Institute of Technology, USA
Best-Paper-Award Committee
Chair: Gwo-Bin Vincent Lee, National Tsing Hua University, Taiwan
Co-Chair: Wen J. Li, HongKong City University, HK
Shanhong Xia, Institute of Electronics, CAS, China
Lina Sarro, Delft University of Technology, Netherlands
Chihming. Ho, UCLA, USA
Hans Zappe, IMTEK, Germany

Industrial and Commercialization Committee
Chair: Kurt Petersen, USA
Co-Chair: Lerwen Liu, Asian Nano Forum, Singapore
Yang Zhao, MEMSIC, China

Publications Committee
Chair: Zhihong Li, Peking University
Co-Chair: Zhidong Wang, Chiba Inst. of Technology, Japan
Jiwei Jiao, Shanghai Institute of Microsystem and information technology, CAS, China

Publicity Committee
Chair: Tie Li, Shanghai Institute of Microsystem and information technology, CAS, China
Co-Chair: Da-Jen Jeffrey Yao, National Tsing Hua University, Taiwan

Cross-Strait Micro-Nano Committee
Co-Chairs: Zewen Liu, Tsinghua University, China
Rong Zhu, Tsinghua University, China
Fangang Tseng, National Tsing Hua University, Taiwan
Shikang Fan, National Taiwan University, Taiwan

Local Scientific Program Committee
Co-Chairs: Jianbin Luo, Chair, Tsinghua University, China
Liwei Chen, Suzhou Institute of Nanotech and Nanobionics, CAS
Members: Bingheng Lu, Ming Liu, Changzhi Gu, Tielin Shi, Guobiao Wang

Local Supporting Team
Yiqing(Fiona) Wang, Yinghui Wei, Liguo Chen, Manman Jin, Dongyu Zhang, Huihui Yang, Clemson Lo
Technical Program Committee

Chair: Yuelin Wang, Shanghai Institute of Microsystem and information technology, CAS, China

Europe Co-Chair: Lina Sarro, Delft University of Technology, Netherlands
Asia/Pacific Co-Chair: Wen J. Li, City University of Hongkong, Hongkong
America Co-Chair: Yitshak Zohar, University of Arizona, USA

Members:

Fumihito Arai, Nagoya University, Japan
Markus Aspelmeyer, University of Vienna, Austria
KC AW, University of Auckland, Newzealand
Juergen Brugger, EPFL, Switzerland
Xinxia Bai, CAS, China
Shuo Hung Chang, National Taiwan University, Taiwan
Shaochen Chen, UCSD, USA
Kevin J. Chen, HKUST, Hongkong
Yong Chen, France
Yu-Ting Cheng, National Chiao Tung University, Taiwan
Sung Kwon Cho, University of Pittsburgh, USA
Franck Chollet, FEMTO-ST Institute, France
Kunkjin Chon, Seoul National University, Korea
Chang-Hwan Choi, Stevens Institute of Technology, USA
Bo Cui, Univ. of Waterloo, Canada
Maria Lucia Curri, Bari Division Italy, Italy
David Cumming, UK, University of Glasgow
Jurg Dual, ETH, Switzerland
Zachary J. Davis, DTU, Denmark
Shih-Kang Fan, National Jiao Tong University, Taiwan
Nicholas Xuanlai Fang, MIT, USA
Gary Fedder, CMU, USA
Wanlin Guo, Nanhang University, China
Dean Ho, Northwestern University, USA
Tony Huang, Penn State University, USA
David Horsley, Univ. of California, Davis, USA
Kazuo Hosokawa, RIKEN, Japan
Hongrui Jiang, University of Wisconsin-Madison, USA
Zhonghe Jin, Zhejiang University, China
Kyung Chun Kim, Pusan National Univ., Korea
Satoshi Konishi, Ritsumeikan Univ., Japan
Yong Jun Kim, Yonsei University, Korea
G.J.M. (Gijs) Krijnen, Holland
Wen Li, MSU, USA
Qiao Lin, Columbia University, USA
Jung Hoon Lee, Seoul National University, Korea
Si-Hyung Lim, Kookmin University, Korea
Shuichi Shoji, Waseda University, Japan
Tie Li, CAS, China
Zhuhong Li, Peking University, China
Miao Lv, Xiamen University, China
Yu-Cheng Lin, National Cheng Kung Univ., Taiwan
Yiping Zhao, Univ. of Georgia, USA
Cheng-Hsien Liu, National Tsinghua Univ., Taiwan
Desheng Meng, Michigan Tech., USA
Ai Qun Liu, Nanyang Technological Univ., Singapore
Liviu Nicu, LAAS-CNRS, France
Shiyuan Liu, Huazhong Univ. of Sci.& Tech., China
Bradley Nelson, ETH, Switzerland
Che-Hsin Lin, National Sun Yat-sen Univ., Taiwan
Je-Kyun Park, KAIST, Korea
Hyejin Moon, University of Texas, Arlington, USA
Tingrui Pan, UC Davis, USA
Shoji Maruo, Yokohama National University, Japan
Francesc Perez-Murano, Barcelona, Spain
Isao Shimoyama, Tokyo University, Japan
Litao Sun, Southeast University, China
Gymama Slaughter, Univ. of Maryland, USA
Aimin Song, University of Manchester, UK
Dong Sun, City Univ. of Hong Kong, HK
Christoph Stampfer, Aachen, Germany
Bill Tang, UC Irvine, USA
Tsuchiya Toshiyuki, Kyoto University, Japan
Everyln Wang, MIT, USA
Dongfang Wang, Ibaraki, Japan
Ping Wang, Zhejiang University, China
Zheyao Wang, Tsinghua University, China
Martin Wegener, Univ. of Karlsruhe, Germany
Wengang Wu, Peking University, China
Lung-Jieh Yang, Tamkang University, Taiwan
Jay Yeh, National TsingHua University, Taiwan
Da-Jeng Yao, National TsingHua Univ., Taiwan
Yao-Joe Yang, National Taiwan Univ., Taiwan
Hans Zappe, IMETK, Germany
Xiaoqing Zhang, Univ. of Texas at Austin, USA
Jia Wei, Delft Univ. of Technology, Holland
Stella Pang, City University of Hong Kong, HK
Philip Feng, Case Western Reserve Univ., USA
S.M. Lee, Pohang Univ. of Sci. & Techn., Korea
Jianmin Miao, Nanyang Tech. Univ., Singapore
Qiangbin Wang, Suzhou Inst. of Nanotech, China
Yi-Kuen Lee, Hong Kong Univ. of Sci. & Tech., HK
Yung-Chun Lee, National Cheng Kung Univ., Taiwan
Mehran Mehregany, CASE Western Reserve Univ., USA
Yuji Miyahara, Tokyo Medical and Dental University, Japan
Weizheng Yuan, Northwest Univ. of Polytechnic Tech., China
Keisuke Morishima, Tokyo Univ. of Agriculture and Tech., Japan
Guus Rijnders, University of Twente, Holland
Kahp-Yang Suh, Seoul National University, Korea
Samuel Sia, Columbia Univ., USA
Terry Turney, Australia
Yu Sun, Univ. of Toronto, Canada
Hongbo Sun, Jilin University, China
Helmut Seidel, Sarrland University, Germany
Wenjiang Shen, Suzhou Institute of Nanotech, CAS, China
Jeff Wang, Johns Hopkins University, USA
Fan-Gang Tseng, National TsingHua Univ., Taiwan
Pak Kin Wong, University of Arizona, USA
Wei Wang, Peking University, China
Piyawattanametha Wibool, Thailand
Wouter van der Wijngaart, Sweden
Huikai Xie, Univ. Florida, USA
Xiongying Ye, Tsinghua University, China
Hirai Yoshikazu, Kyoto University, Japan
Kwang-Seok Yun, Sogang University, Korea
Darrin Young, Utah, USA
Edward Chow, UC San Francisco, USA
Frank Niklaus, KTH, Sweden
Gullo Maurizio, EPFL, Switzerland
Veronica Savu, EPFL, Switzerland
Zuankai Wang, City Univ. of Hong Kong, HK
Conference Awards

Best Paper Award

IEEE-NEMS 2013 conference has the following four categories of conference awards:

1. **Best Conference Paper Award**
2. **Best Student Paper Award**
3. **CM HO Best Paper Award in Micro/Nano Fluidics**
4. **Best Conference Poster Award**

For any of these awards, factors to be considered in determining the winners are the significance of the new findings, applications, technical merits, originality, potential impact on the field, and clarity of presentation. The awards winners will be announced at the [Conference Banquet](#) and receive a [Certificate](#) and [Cash Prize of US$ 300](#).

IEEE-NEMS 2013 Award Rules

- Authors may nominate their original research work to enter the Awards Competition when they submit their 2-page abstracts. The TPC members nominate the Best Paper Candidates in their review process and Best Paper Committee will decide the final list based on TPC nomination.
- The Technical Program Co-Chairs who are responsible for handling the reviews of abstracts submitted to the “Microfluidics and Nanofluidics” category will nominate finalist papers to be considered for the CM HO Best Paper in Micro/Nano Fluidics Award. Authors who are currently performing research in any labs/organizations directed by Prof. Chih-Ming HO is NOT eligible to receive this award.

Best-Paper-Award Criteria

All the Award Committee Members are the judges for selecting the winner of the Best Paper Award, and they will attend each presentation and evaluate each finalist’s performance according to the following evaluation criteria:

1. Originality, Technical strength and Presentation on the paper;
2. Oral/Poster presentation and Q&A performance at the conference.
3. The oral/poster presentations of the finalist papers will be opened to all conference attendees.
Invited Speakers

- **Plenary Speakers**

 Jing Cheng

 Jing Cheng, PhD, is a Cheung Kong Professor at Medical Systems Biology Research Center, Department of Biomedical Engineering, Tsinghua University School of Medicine, Director of National Engineering Research Center for Beijing Biochip Technology, Member of the Chinese Academy of Engineering.

 Dr. Cheng received his B.Eng. degree in Electrical Engineering from Tongji University (China) and Ph.D. degree in Forensic Sciences from the University of Strathclyde (UK). He gained additional postdoctoral experience at the University of Strathclyde and the University of Aberdeen (UK) and the University of Pennsylvania (USA) where he was appointed as a Research Assistant Professor in the School of Medicine. In 1996 he joined Nanogen Inc in San Diego as a Staff Scientist/Engineer where he was later promoted to Principal Scientist and Engineer, and Principal Investigator. From 1999 to 2001 he assumed the role of Chief Technology Officer at Aviva Biosciences Corp in San Diego, USA. From 2000 to present, he is managing the overall research as the director of National Engineering Research Center for Beijing Biochip Technology, and serves as CEO and CTO at CapitalBio Corporation in Beijing. He was awarded Nanogen’s most prestigious award NanoGrant in 1999, National Young Scientist Award in 2004, Qiushi Outstanding Youth Technology Transfer Award in 2004, Second Prize of the National Awards for Technological Innovation in 2007, Ho Leung Ho Lee Prize for Scientific and Technological Innovation in 2008 and Tanjiazhen Life Science Innovation Award in 2008. Dr. Cheng has published 115 peer-reviewed papers and edited 8 books. In addition, he has obtained 38 European and US patents. He has been an invited speaker to many international conferences. His current interest is in the development of biochip-based microsystems for check-up and diagnostic use and ultra-high throughput systems for drug screening.

 Title: Translational Medicine: Microarrays, Microfluidics and Mobile Labs
• Plenary Speakers

Albert ("Al") P. Pisano

Albert ("Al") P. Pisano is a Director of the Berkeley Sensor & Actuator Center (BSAC) and has recently completed 5-1/2 years as Professor and Chair of the Department of Mechanical Engineering at the University of California at Berkeley. He was elected to the National Academy of Engineering in 2001. A member of the American Society of Mechanical Engineers, he was elected to Fellow status in 2004. In Mechanical Engineering, Professor Pisano holds the FANUC Chair of Mechanical Systems, with a joint appointment to the Department of Electrical Engineering and Computer Science. From 1997-1999, he served as Program Manager for the MEMS program at the Defense Advanced Research Projects Agency (DARPA) in Arlington, VA, where he expanded the MEMS research portfolio to 83 contracts awarded nationwide with a total MEMS research expenditure in excess of $168 million distributed over 3 fiscal years. His research interests and activities at UC Berkeley include MEMS for a wide variety of applications, including harsh environment sensors systems.

• Plenary Speakers

Zhonglin Wang

Zhonglin Wang received his PhD from Arizona State University in transmission electron microscopy. He now is the Hightower Chair in Materials Science and Engineering, Regents' Professor, Engineering Distinguished Professor and Director, Center for Nanostructure Characterization, at Georgia Tech. Dr. Wang has made original and innovative contributions to the synthesis, discovery, characterization and understanding of fundamental physical properties of oxide nanobelts and nanowires, as well as applications of nanowires in energy sciences, electronics, optoelectronics and biological science. His discovery and breakthroughs in developing nanogenerators establish the principle and technological road map for harvesting mechanical energy from environment and biological systems for powering a personal electronics. His research on self-powered
nanosystems has inspired the worldwide effort in academia and industry for studying energy for
micro-nano-systems, which is now a distinct disciplinary in energy research and future sensor networks. He
coined and pioneered the field of piezotronics and piezo-phototronics by introducing piezoelectric potential
gated charge transport process in fabricating new electronic and optoelectronic devices. This breakthrough by
redesign CMOS transistor has important applications in smart MEMS/NEMS, nanorobotics, human-electronics
interface and sensors. Dr. Wang’s publications have been cited for over 52,000 times. The H-index of his
citations is 110. Dr. Wang was elected as a foreign member of the Chinese Academy of Sciences in 2009,
member of European Academy of Sciences in 2002, fellow of American Physical Society in 2005, fellow of
AAAS in 2006, fellow of Materials Research Society in 2008, fellow of Microscopy Society of America in
2010, and fellow of the World Innovation Foundation in 2002. He is an honorable professor of over 10
universities in China and Europe. He received 2012 Edward Orton Memorial Lecture Award from American
Ceramic Society, 2011 MRS Medal from the Materials Research Society, 1999 Burton Medal from Microscopy
Society of America, 2001 S.T. Li prize for Outstanding Contribution in Nanoscience and Nanotechnology, and
the 2009 Purdy Award from American Ceramic Society. Details can be found at:
http://www.nanoscience.gatech.edu

Title: Piezotronics for smart MEMS and human-CMOS interfacing

- Keynote Speakers

Martin Wegener

After completing his PhD in physics in 1987 at Johann Wolfgang Goethe-Universität Frankfurt (Germany), he
spent two years as a postdoc at AT&T Bell Laboratories in Holmdel (U.S.A.). From 1990-1995 he was
C3-Professor at Universität Dortmund (Germany), since 1995 he is C4-Professor at Universität Karlsruhe (TH).
Since 2001 he has a joint appointment at Institut für Nanotechnologie of Forschungszentrum Karlsruhe GmbH.
Since 2001 he is also the coordinator of the DFG-Center for Functional Nanostructures (CFN) in Karlsruhe. His
research interests comprise ultrafast optics, (extreme) nonlinear optics, near-field optics, photonic crystals,
photonic metamaterials, and transformation optics. This research has led to various awards and honors, among
which are the Alfried Krupp von Bohlen und Halbach Research Award 1993, the Baden-Württemberg Teaching Award 1998, the DFG Gottfried Wilhelm Leibniz Award 2000, the European Union René Descartes Prize 2005, the Baden-Württemberg Research Award 2005, and the Carl Zeiss Research Award 2006. He is a member of Leopoldina, the German Academy of Sciences (since 2006), Fellow of the Optical Society of America (since 2008), Fellow of the Hector Foundation (since 2008), and Adjunct Professor at the Optical Sciences Center, Tucson, U.S.A. (since 2009).

Title: Diffraction-unlimited three-dimensional optical lithography

Nicolas Xuanlai Fang

Professor Nicholas X. Fang received his BS and MS in physics from Nanjing University, and his PhD in mechanical engineering from University of California Los Angeles. He arrived at MIT in Jan 2011 as an associate professor in MechE. Prior to MIT, he worked as an assistant professor at the University of Illinois Urbana-Champaign. Professor Fang’s areas of research look at nanophotonics and 3D nanomanufacturing. He is an invited participant of the Frontiers of Engineering Conference by National Academies in 2010, a recipient of the ICO prize from the International Commission of Optics (2011), the NSF CAREER Award (2009), the Society of Manufacturing Engineering Outstanding Young Investigator Award (2009); MIT Technology Review Magazine’s 35 Young Innovators Award (2008); and the ASME Pi Tau Sigma Gold Medal Award (2006).

Title: Folding Light with Photonic Metamaterials: Controllable Photon Trapping, Extraction and Optofluidic assembly

Gilbert C. Walker

Gilbert C. Walker is the Canada Research Chair Professor of Molecular Microscopy and Nanophotonics in the Department of Chemistry at the University of Toronto. He obtained his A.B. and Ph.D. degrees in Chemistry at Bowdoin College and the University of Minnesota, respectively. His nanoscience research group is known for
developing and applying scanning probe microscopy for the analysis of polymers. Biomaterials are a focus area of his research, with a recent interest in how polymer elasticity affects tissue growth. In a series of papers Walker has shown how the unstable mechanics of AFM tips may be used to measure the adhesive and viscoelastic properties of polymer surfaces. This work began during an effort to characterize anti-fouling polymer surfaces for marine coatings. In addition, Walker’s group accomplished the first infrared spectroscopy of polymer surfaces at a spatial resolution below 100 nm.

Title: Novel Developments based on Atomic Force Microscopy

Wan-Lin Guo

Title: Advances and Challenges in Graphene Based Devices

David Cumming

David R. S. Cumming has B.Eng (Glasgow, 1989) and PhD (Cambridge, 1993) degrees. He has worked variously on mesoscopic device physics, RF characterization of novel devices, fabrication of diffractive optics for optical and sub-millimeter wave applications and microelectronic design. He is presently Professor of Microsystems Technology and EPSRC Advanced Research Fellow in Electronics and Electrical Engineering at
Isao Shimoyama received the B.E., M.E., and Dr. of Engineering degrees in mechanical engineering from The University of Tokyo in 1977, 1979, and 1982, respectively. He joined The University of Tokyo in 1982 and is presently Professor, Director of Information and Robot Technology Research Initiative. His current Research interest is in Robotics, MEMS and nano-on-microsystems.

Title: Folding Light with Photonic Metamaterials: Controllable Photon Trapping, Extraction and Optofluidic assembly

Dr. Mark G. Allen received the B.A. degree in Chemistry, the B.S.E. degree in Chemical Engineering, and the B.S.E. degree in Electrical Engineering from the University of Pennsylvania, and the S.M. and Ph.D. (1989) from the Massachusetts Institute of Technology. In 1989, he joined the faculty of the School of Electrical and Computer Engineering of the Georgia Institute of Technology, where he currently holds the rank of Regents' Professor and the J.M. Pettit Professorship in Microelectronics. His current research interests are in the field of microfabrication and nanofabrication technology, with emphasis on new approaches to fabricate devices with characteristic lengths in the micro- to nanoscale from both silicon and non-silicon materials. Professor Allen was the co-chair of the 1996 IEEE/ASME Microelectromechanical Systems Conference and the 2012 Power MEMS conference. He is also co-founder of two MEMS-oriented companies, CardioMEMS and Axion Biosystems. He is a Fellow of the IEEE.

Title: An Electroplating-Based Approach to Volumetric Nanomanufacturing And Its Application to Energy Conversion and Storage
Hong-Bo Sun received the B.S. and the Ph.D. degrees in electronics from Jilin University, Jilin, China, in 1992 and 1996, respectively. He worked as a postdoctoral researcher in Satellite Venture Business Laboratory, the University of Tokushima, Japan, from 1996 to 2000, and then as an assistant professor in Department of Applied Physics, Osaka University, Osaka, Japan. In 2005, he was promoted as a full professor (Changjiang Scholar) in Jilin University, China. His research interests have been laser nanofabrication and ultrafast spectroscopy: Fabrication of various micro-optical, microelectronical, micromechanical, microoptoelectronic, microfluidic components and integrated systems at nanoscales, and exploring ultrafast dynamics of photons, electrons, phonons, and surface plasmons in solar cells, organic light-emitting devices and low-dimensional quantum systems at femtosecond timescale. So far, he has published nearly 150 scientific papers in the above fields, which have been cited nearly 5000 times according to ISI search report.

Title: Nano-micro-engineered polymers for advanced applications

Tae Song Kim received the Ph.D degree in department of material science and engineering at Korea Advanced Institute of Science and Technology (KAIST). In 1994, he joined as a senior researcher in Korea Institute of Science and Technology (KIST), and since 2000, he is principal researcher in KIST. He also spent his postdoctoral associate position in department of electrical engineering and computer science at University of Minnesota, USA from 1997 to 1998. He was director of microsystem research center in KIST from 2000 to 2004, and then he served as a director of intelligent microsystem center (IMC) from 1994 to 2010, which was one of the 21st century frontier R&D program sponsored by Ministry of Commerce, Industry & Energy (MOCIE). Since 2005, he is also Professor in department of micro nano system engineering in University of Science and Technology(UST).

Dr. Kim also served as a chairman of MicroTAS 2009 in Jeju, Korea. He is a member of board of director in
Chemical and Biological Microsystem Society (CBMS). He also served as a President of Korea biochip society in 2011 and of Micro Nano systems society in 2012. He received several award: Excellent Research Award from Korea Research Council of Fundamental Science & Technology, Prime minister Award, Excellent Research Award, Chung Jin-Ki Media and Culture Foundation, and Young Engineer Award, The National Academy of Engineering of Korea. His research interests are MEMS based diagnostic system, BioMEMS, Biosensors/Chip and piezoelectric MEMS devices. He also has research interest in the area of Biomimetic microfabrication.

Title: Molecular based detection using piezoelectric thin film coated microcantilever

Gwo-Bin Vincent Lee

Gwo-Bin Lee received his B.S. and M.S. degrees in Department of Mechanical Engineering from National Taiwan University in 1989 and 1991, respectively. He received his Ph.D. in Mechanical & Aerospace Engineering from University of California, Los Angeles, USA in 1998. Dr. Gwo-Bin Lee was a Distinguished Professor in the Department of Engineering Science at National Cheng Kung University. Currently, he is a Distinguished Professor in the Department of Power Mechanical Engineering at National Tsing Hua University. His research interests are on nano-biotechnology, micro/nanofluidics and their biomedical applications. He is the directors of “MEMS Design and Microfabrication Lab” and “Microfluidics Biochip Lab”. Dr. Lee has been active in the field of micro/nanofluidic systems, and is developing integrated micro/nano systems incorporated with nano/biotechnology for biomedical applications. He has developed several micro/nano-scale platforms for cell, protein, and DNA manipulation and detection. Dr. Lee has published over 180 SCI journal papers, 460conference papers, and filed 102 patents (50 patents granted). His works have been highly cited over 3000 times in the past ten years. He has received many important several academic awards. Such as, Excellent Research Award from National Science Council in Taiwan (2007, 2011), National Innovation Award (2008), Distinguished Engineering Professor Award from Chinese Engineering Society (2009), Distinguished Kuo-Ting Lee Researcher Award from Kuo-Ting Lee Foundation (2009).

Title: Optically-induced dielectrophoresis (ODEP) on microfluidic systems for biomedical/nanotechnology applications
Xinxin Li

Prof. Xinxin Li received the B.S. degree in semiconductor physics and devices from Tsinghua University, Beijing, China, in 1987. From 2001 to now, he has been a professor and now serves as the Director of the State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences. He is also serving as Adjunct Professor in both Fudan University and Shanghai Jiaotong University now. Prof. Li was granted the National Science Fund for Distinguished Young Scholar in 2007. He is the laureate of the Chinese National Award for Technological Invention and the Shanghai Award for Technological Invention. He has invented more than 70 patents and published more than 200 papers in referred journals and academic conferences (including about 130 SCI journal papers). He has served as TPC members, respectively, for IEEE MEMS, Transducers and IEEE International Conference on Sensors. He is the editorial board member for Journal of Micromechanics and Microengineering. He has been invited to present invited talks in numerous international conferences and write topic-review papers for international journals.

Title: Efforts on the two interfaces of resonant-cantilever for ultra-sensitive bio/chemical sensing

Jianxin Wu

Mr. Jianxin (Jacky) Wu joined Suzhou Industrial Park Administrative Committee (SIPAC) in 2002 and currently serves as the Deputy Director of Suzhou Industrial Park Sci. & Tech. Development Center and also the Executive Vice President of Suzhou Nanotech Co., Ltd., the General Manager of CHInano Investments Co., Ltd. He has rich experience on investment promotion for WFOE, overseas high-tech experts and companies to establish collaboration and presence in SIP. He and his team have attracted over 100 nanotech companies (including some of the top nanotech companies in SIP such as Halation, Polynova, CUPM, Longpowers, etc.) and 2500 high-tech experts/entrepreneurs to settle in SIP and provided them strategic and comprehensive support/services especially in the industry areas of LED, MEMS, GaN, Laser, Functional Nano Materials, etc.

Title: Suzhou Industry Park Overview and Nanopolis Suzhou
Electron-beam lithography is a workhorse of nano- and microfabrication. It offers excellent spatial resolution, but it is essentially a two-dimensional technology. For many applications, a truly three-dimensional lithography would be highly desirable. Direct laser writing (DLW) optical lithography can be seen as the three-dimensional (3D) counterpart of electron-beam lithography. Over the last decade, 3D-DLW has matured from a laboratory curiosity to a commercially available, reliable, and versatile workhorse (see, e.g., www.nanoscribe.de). However, it seemed as if the Abbe diffraction barrier would fundamentally limit the accessible spatial resolution. Recent work on stimulated-emission-depletion (STED) based 3D-DLW has overcome this barrier. Furthermore, another seemingly fundamental barrier, namely that regarding the accessible overall sample height has also been overcome by introducing 3D "dip-in" DLW, which can potentially be combined with 3D-STED-DLW. In this keynote talk, we give an introduction and review the current state-of-the-art of the field.

Recently, exciting new physics and applications are emerging from metamaterials made of artificial "atoms" and "molecules". These metamaterials have overcome by introducing 3D "dip-in" DLW, which can potentially be combined with 3D-STED-DLW. In this keynote talk, we give an introduction and review the current state-of-the-art of the field.
inspired a series of key explorations to manipulate, store and control the flow of energy at unprecedented dimensions. Yet, these ground-breaking achievements are only the tip of the iceberg, where the next-generation metamaterials, incorporating unique topological interactions between waves and matter, are waiting to be discovered. In this talk, I will discuss our effort of fabrication and characterization of these optical metamaterials for broadband light trapping, mixing and extraction. Such strong localization and enhanced photoemission is observed by novel near field optical and electron probes. These novel metamaterials could be the foundation of broadband photo-absorbers, directional emitters, as well as compact and power-efficient devices in highly parallel optical networks. I will also discuss our progress in digital optofluidic self-assembly processes for scalable manufacturing of these heterogeneous metamaterials.

10:30-11:00 Coffee Break and Exhibition

11:00-11:30 1A4 Keynote Speaker 3: Gilbert C. Walker (Watson Auditorium)
Chair: Gobrecht Jens & Zheng Cui

Gilbert C. Walker
Department of Chemistry, University of Toronto, Canada

Several developments of atomic force microscopy are reported. The first is a way to probe the mechanical responses of single molecules and the surfaces to which they are attached. The second is a way to probe the mechanical properties of anisotropic nanomaterials such as individual boron nitride nanotubes. The third is a way to probe the infrared vibrational spectra of materials with 20 nm spatial resolution. The physical principles and scientific frontiers opened by these probes will be presented.

11:30-12:00 1A4 Keynote Speaker 4: Wan-Lin Guo (Watson Auditorium)
Chair: Gobrecht Jens & Zheng Cui

Wan-Lin Guo
Institute of Nanoscience, Key Laboratory of Intelligent Nano Materials and Devices of Ministry of Education and State Key Laboratory of Mechanics and Control for Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China

During the last three decades, we have been digging down from macro- to micro- and nano-scale for fabrication of both structures and electromechanical systems. Especially in the last decade, our ability to manipulate and use the single atomic hexagonal carbon layer, graphene, lead us to a new stage in micro and nanotechnology. No like the never visible o-dimensional (0D) nanoparticles and one-dimensional (1D) nanowires and nanotubes, graphene brings us into a fantastic two-dimensional (2D) age of nanotechnology, which can be fabricated and applied at wafer scale, visible at single layer but showing exceptional mechanical, electronic, magnetic and optical properties completely distinguished from its bulk form graphite. This kind of 2D functional materials links the atomic properties with the engineering scale of our mankind, completing the nanomaterial dimensions and showing greater potential for marketing technology. In this lecture, we will briefly review the recent advances in fabrication, characterization, transfer, and applications of single and few layered graphene for functional devices, including strain sensors, gas flow sensors, transistors, photonic manipulators, magnetic devices, electromagnetic and optoelectronic devices, and in energy technology. Other important 2D materials beyond graphene will be briefly introduced. Especially, challenges for manufacture of 2D materials and their devices will be analyzed based on our experience and comprehensive understanding. New materials are always used for create new principle devices and bring us into new regime of technology. Some perspectives for graphene like 2D functional materials will be finally discussed.

12:00-13:00 Conference Lunch (Grand Ball Room)

13:00-14:15 Session:1B1 Session:1C1 Session:1D1 Session:1E1

<table>
<thead>
<tr>
<th>Room</th>
<th>Topic</th>
<th>Chair</th>
<th>Co-Chair</th>
<th>Paper ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>Micro/nano Fabrication & Metrology</td>
<td>Xiaoqing Zhang</td>
<td>& Weizheng Yuan</td>
<td>327, 285, 308, 326, 197</td>
</tr>
<tr>
<td>M2</td>
<td>Nanomaterials 1</td>
<td>Wendong Zhang</td>
<td>& Qiao Lin</td>
<td>117,152,297,314,338</td>
</tr>
<tr>
<td>M3</td>
<td>Cross-Start</td>
<td>& Fangang Tseng</td>
<td>& Lina Sarro</td>
<td>136,138,151,367, 268,162,243,467,462</td>
</tr>
<tr>
<td>EII</td>
<td>Best Conference Paper</td>
<td>Gwobin Lee</td>
<td>& Lina Sarro</td>
<td>25</td>
</tr>
</tbody>
</table>
FABRICATION OF THREE-DIMENSIONAL METALLIC MICROCOMPONENTS IN FUSED SILICA BY A FEMTOSECOND LASER & MICROMOUDDLING (FLM) METHOD

This paper presents the recent results of utilization of micro-Raman spectroscopy to measure and characterize residual stress in polysilicon doubly-clamped MEMS resonators with small lateral size. Due to imprecise prediction of the magnitude of intrinsic residual stress, detrimental effect of the residual stress severely shifts the resonant frequency of MEMS resonator from the analytical pre-designed value. The stress is not only determined by the fabrication process but also related to the structural dimensions of resonators. In this work, micro-Raman spectroscopy was used to measure the residual stress of resonators within width down to 2μm. The results show that the optimized resonator with length shorter than 50μm and width between 3.2μm and 4.1μm exhibits minimum residual stress.

MICRO-RAMAN SPECTROSCOPY ANALYSIS OF RESIDUAL STRESS IN POLYSILICON MEMS RESONATORS

This paper focuses on fabrication of silica opal structures by self-assembling silica spheres, which can be used as an array of high throughput and low cost reactors or micro-filters. The reactors can carry out hundreds different reactions in parallel; while there is about 50 nano-liter reagent consumed in each reactor. It not only provides large surface area for reaction, but also solves the issue of high throughput experiments. The mechanical strength of the opal has to be high enough to withstand fluid flushing during sample loading and cleaning. In this paper, the optimized process is developed to fabricate the reactor. It not only provides large surface area for reaction, but also solves the issue of high throughput experiments.

MICRO-NANO STRUCTURE WRITTEN VIA SHEATH GAS ASSISTED EHD JET

This paper presents the recent results of utilization of micro-Raman spectroscopy to measure and characterize residual stress in polysilicon doubly-clamped MEMS resonators with small lateral size. Due to imprecise prediction of the magnitude of intrinsic residual stress, detrimental effect of the residual stress severely shifts the resonant frequency of MEMS resonator from the analytical pre-designed value. The stress is not only determined by the fabrication process but also related to the structural dimensions of resonators. In this work, micro-Raman spectroscopy was used to measure the residual stress of resonators within width down to 2μm. The results show that the optimized resonator with length shorter than 50μm and width between 3.2μm and 4.1μm exhibits minimum residual stress.

MICRO-RAMAN SPECTROSCOPY ANALYSIS OF RESIDUAL STRESS IN POLYSILICON MEMS RESONATORS

This paper presents the recent results of utilization of micro-Raman spectroscopy to measure and characterize residual stress in polysilicon doubly-clamped MEMS resonators with small lateral size. Due to imprecise prediction of the magnitude of intrinsic residual stress, detrimental effect of the residual stress severely shifts the resonant frequency of MEMS resonator from the analytical pre-designed value. The stress is not only determined by the fabrication process but also related to the structural dimensions of resonators. In this work, micro-Raman spectroscopy was used to measure the residual stress of resonators within width down to 2μm. The results show that the optimized resonator with length shorter than 50μm and width between 3.2μm and 4.1μm exhibits minimum residual stress.
(IC1-1) Ag2S QUANTUM DOT: A BRIGHT AND BIOCOMPATIBLE FLUORESCENT NANOPROBE IN THE SECOND NEAR-INFRARED WINDOW

Yejuan Zhang1, Yan Zhang1, Guosheng Hong1, Hongjie Dai1, Qiangbin Wang1

1Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China.
2Stanford University, Stanford, United States.

Fluorescent imaging in the second near-infrared window (NIR-II, 1.0-1.4 µm) is appealing due to minimal autofluorescence and negligible tissue scattering in this region, allowing maximal penetration depth for deep tissue imaging with high feature fidelity. Simulations and modeling studies suggested that fluorophores with emission in the 1000-1320 nm NIR-II region could significantly improve signal-to-noise ratio compared to those emitting at 650-950 nm (NIR-I). Recent efforts have been devoted to identifying NIR-II emitting agents for in vivo imaging applications. Quantum dots (QDs) such as PbSe, PbS, and CdHgTe with NIR emission have been successfully developed. However, the highly toxic nature of Pb, Cd and Hg is of concern for in vivo applications. Therefore, highly biocompatible NIR-II fluorescent probes that do not contain Cd, Pb or Hg will facilitate biological imaging in this beneficial spectral region. Herein, we first reported a new type of NIR QDs, Ag2S QDs, with emission in the NIR-II region. For the first time, highly selective in vitro targeting and imaging of different cell lines were achieved using biocompatible NIR-II Ag2S QDs with different targeting ligands. Furthermore, in vivo imaging of early-stage tumors in mice with Ag2S QDs was also achieved. Video-rate dynamic contrast-enhanced imaging revealed deep inner organs and tumors in mice. Due to ultraviolet background and reduced photon scattering in NIR-II, early-stage detection of ultrasmall tumors (~0.25 mm3) and hindlimb vessel imaging with Ag2S QDs at high spatial resolution and deep tissue penetration were demonstrated. The 6PEG-Ag2S QDs afforded an unusually high tumor uptake of QDs of ~10% injected dose/gram, owing to a long circulation half-life of ~4 h. Clearance of the injected 6PEG-Ag2S QDs occurred mainly through the biliary pathway in mice. The Cd- and Pb-free nature, NIR-II emission, branched PEG coating and favorable pharmacokinetics of 6PEG-Ag2S QDs make them a promising in vivo imaging agent.

(IC1-2) NANOTEXTURED CHITOSAN SURFACES FOR STUDYING CELL BEHAVIORS

Chung-Yao Yang, Chun-Yen Sung, J. Andrew Yeh

Institute of Nanoeengineering and Microsystems, National Tsing Hua University, Taiwan

This paper describes an easy method to fabricate nanoscale features on chitosan membranes from a silicon mold through using a combination of solution casting and etching process. Three different molecular weight chitosan powders were used to evaluate the topography of nanoscale features after molding process. The Young's module of three different molecular weight (120, 185 and 250 kDa) are almost the same in air with a value about 6 GPa and in medium with a value about 5 MPa. The size of the nanotexture is 250 nm in width and 200 nm in depth. Human breast cancer cells MCF-7 and HIG-82 preferred to adhere on flat chitosan surfaces than on nanotextured chitosan surfaces. This nanotextured chitosan surfaces could be used for controlling cell development in bio-relevant applications, such as biomedical devices, biology and tissue engineering.

(IC1-3) GROWTH OF ARRAYED ZnO NANOWIRES USING A SOLUTION METHOD

Shouhe Zhang1, Yongji Gao1, Mengdi Han1, Haixia Zhang1

1National Key Laboratory on Micro/Nano Fabrication Technology, Institute of Microelectronics, Peking University, China
2Peking University Shenzhen Graduate School, Shenzhen, China

In this paper, we report a simple solution method to synthesize well-aligned ZnO nanowires arrays on silicon substrate with ZnO seed layer. We can control the morphology of ZnO NWs arrays by adjusting growth parameters, such as the thickness of the seed layer, the concentration of the solution, the growth temperature, the growth time and the pretreatment, etc. The size of ZnO NWs can be regulated according to the desired parameters, too, for example, results show that the diameter and alignment will upgrade as the thickness of the seed layer increased, and the length and diameter will increase as the concentration, temperature and growth time increased. What's more, the ultrasonic pretreatment of the solution and the pre-cleaning of the substrate in the reaction solution will enhance the uniformity of ZnO NWs significantly. This synthesis technique can be carried out at low temperature, low cost and large scale on any substrates.

(IC1-4) FABRICATION OF NANOPORES USING ELECTRON BEAM

Tao Xu, Xiao Xie, Litoa Sun

SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, China

Sub-5 nm nanopores are widely used in singlemolecule detections for biological and chemical applications. However, the traditional fabrication methods are difficult to reduce pore size to sub-5 nm. Focused electron beam irradiation inside a transmission electron microscope (TEM) is verified experimentally to be an effectively straightforward way to fabricate such small pores. The fabrication process can be explained by a simple physical collision model. We also fabricate graphene nanopores under various temperatures. The experimentally to be an effectively straightforward way to fabricate such small pores. The fabrication process can be explained by a simple physical collision model. We also fabricate graphene nanopores under various temperatures. The experimentally to be an effectively straightforward way to fabricate such small pores. The fabrication process can be explained by a simple physical collision model. We also fabricate graphene nanopores under various temperatures. The experimentally to be an effectively straightforward way to fabricate such small pores. The fabrication process can be explained by a simple physical collision model. We also fabricate graphene nanopores under various temperatures. The experimentally to be an effectively straightforward way to fabricate such small pores. The fabrication process can be explained by a simple physical collision model. We also fabricate graphene nanopores under various temperatures. The experimentally to be an effectively straightforward way to fabricate such small pores. The fabrication process can be explained by a simple physical collision model. We also fabricate graphene nanopores under various temperatures. The experimentally to be an effectively straightforward way to fabricate such small pores. The fabrication process can be explained by a simple physical collision model. We also fabricate graphene nanopores under various temperatures. The experimentally to be an effectively straightforward way to fabricate such small pores. The fabrication process can be explained by a simple physical collision model. We also fabricate graphene nanopores under various temperatures. The experimentally to be an effectively straightforward way to fabricate such small pores. The fabrication process can be explained by a simple physical collision model. We also fabricate graphene nanopores under various temperatures. The experimentally to be an effectively straightforward way to fabricate such small pores. The fabrication process can be explained by a simple physical collision model. We also fabricate graphene nanopores under various temperatures.

(IC1-5) MECHANICAL PROPERTIES OF PIEZOELECTRIC PVDF/MWCNT FIBERS PREPARED BY FLAT/HOLLOW CYLINDRICAL NEAR-FIELD ELECTROSPINNING PROCESS

Z.H. Liu1, C.T. Pan1, L.W. Lin1, H.W. Li1, C.A. Ke1, J.C. Huang1, P.S. Wang1

1Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-Sen University, and Center for Nanoscience & Nanotechnology, National Science Council Core Facilities Laboratory for Nano-Science and Nano-Technology in Kaohsiung-Pingtung area, Kaohsiung 804, Taiwan
2Department of Mechanical Engineering and Berkeley Sensor and Actuator Center, University of California, Berkeley, USA
Session: 1E1 Best Conference Paper Room EIII

Chair&Co-Chair: Gwobin Lee & Lina Sarro

(1E1-1) SILICON NANOWIRE RESONATORS FOR AEROSOL NANOPARTICLE MASS SENSING No.268
Hutom Suryo Wasisto 1, Stephan Merzsch 1, Andrej Stranz 1, Andreas Waag 2, Erik Uhde 1, Tunga Salthammer 1, Erwin Peimer 1
1Institute of Semiconductor Technology (IHT), TU Braunschweig, Germany
2Material Analysis and Indoor Chemistry Department (MAIC), Fraunhofer WKI, Germany

In this work, silicon nanowire-based resonators were fabricated and employed to sense aerosol nanoparticles (NPs) by measuring resonant frequency shifts induced by the mass of stuck NPs. The fabrication of silicon nanowire (SiNW) arrays was performed utilizing inductively coupled plasma (ICP) dry etching and multiple thermal oxidations. The SiNWs were coated with gold for contacting to the homebuilt electrostatic NP sampler to collect the flowing NPs. A piezoelectric shear actuator mounted in the frequency measurement system was used to excite the SiNW sensors into resonance. Tested in a TiO2 aerosol sampling with a total concentration of ~8500 particle/cm³, the sensor displayed its feasibility as a nanobalance to detect aerosol NPs in the femtogram scale with a mass sensitivity of 7.1 Hz/fg and a mass resolution of 31.6 fg. To extend the operating life of the sensor, an ultrasonic removal method was used to detach the adhered NPs.

(1E1-2) SPECIAL PROPERTIES OF NEW TYPE CARBON-COPPER CORE-SHELL NANOPARTICLES COMPOSITE MATERIAL FABRICATED USING BIOMASS AS TEMPLATE .. No.162
Kun Lian 1, Yang Qi 1, Qingbin Wu 1, Xiaopeng Wang 2, Weifeng Li 3
1Suzhou School of Nano-Science and Nano-Engineering, Xi’an Jiaotong University, Suzhou Industrial Park, China. 215123
2Center for Advanced Microstructures and Devices, Louisiana State University, Baton Rouge, LA70806, USA
3Urban Forest Department, Southern University AgCenter, Baton Rouge, LA70813, USA

A new type of carbon-copper core-shell nanoparticles (CCCSNs) have been fabricated using biomass as template. CCCSNs, as made, are homogeneously embedded in carbon black as a composite material. The composite material can be further processed in different dimensions (from hundreds nanometers to meters) based on application needs. The special carbon shell transformed from biomass can protect the copper core from oxidation in ambient environment for years, at the same time, let Cu show the typical anodic behavior in a wider potential range. The CCCSNs made from this innovative technology eliminates the detrimental impacts of conventional engineered nanoparticles usually have and provide the superior properties, including the low cost for fabrication, that conventional copper nanoparticles don’t have.

(1E1-3) SPONTANEOUS SHRINKING SILICA NANOMEMBRANE FOR SOLID PHASE DNA EXTRACTION ... No.243
Yi Zhang 1, Ye Zhang 1, Brian Keeley 1, Alejandro Stark 1, Tzu-Huei Wang 1, 2
1Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
2Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland, USA

In this report, we describe a novel approach to fabricating silica nanomembrane based on the spontaneous shrinking of pre-stretched, heat-shrinkable polyolefin (PO) film coated with silica. The surface resulted from the surface wrinkling exhibits unique overlapping hierarchical structures ranging from nano to micro scale, which is mainly determined by the thicknesses of silica deposition. We have applied the nanomembrane to DNA purification, and have evaluated its efficiency by comparing with commercial magnetic particles. Results show that DNA extracted with nanomembrane has higher recovery yield than those extracted with particles. Thicker silica layer leads to wider specific areas thus larger DNA adsorption capacity and higher recovery yield. Furthermore, DNA isolated using the nanomembrane display higher purity and better integrity.

(1E1-4) ICE FISHING MICRO CHANNELS WITH SUB-MICRON PORES .. No.467
Justin Young-Hyun Kim 1, Yang Liu 2, Nicholas Sciammarella 2, Pervinmahal (Yok) Satsanunkkait 1, Yu-Chong Ta 2
1DMC R&D Center, Samsung Elec., Suwon, Korea
2Electrical Engineering, California Institute of Technology, Pasadena, USA

We report here a micro fluidic device with a controlled opening, which is used for accessing the fluid inside the micro channel from outside. The control of the reduced diameter of the opening pore is achieved by depositing a controlled Parylene layer on a starting larger opening hole. By changing the Parylene type and thickness, we can control the pore size and surface hydrophobicity. Due to the Laplace-Young’s pressure induced by the surface tension of the liquid in the vicinity of the pore, the internal fluid can be pressurized without leaking through the pore.

(1E1-5) STRONG SERS FROM GOLD NANOSTRUCTURE SANDWICHED ON SINGLE LAYER GRAPHENE FOR HIGH SENSITIVE BIOMOLECULE DETECTION ... No.462

Yi Zhang 1, Y e Zhang 1, Brian Keeley 2, Alejandro Stark 2, Tza-Huei Wang 1, 2
1Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
2Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland, USA

A new type of carbon-copper core-shell nanoparticles (CCCSNs) have been fabricated using biomass as template. CCCSNs, as made, are homogeneously embedded in carbon black as a composite material. The composite material can be further processed in different dimensions (from hundred nanometers to meters) based on application needs. The special carbon shell transformed from biomass can protect the copper core from oxidation in ambient environment for years, at the same time, let Cu show the typical anodic behavior in a wider potential range. The CCCSNs made from this innovative technology eliminates the detrimental impacts of conventional engineered nanoparticles usually have and provide the superior properties, including the low cost for fabrication, that conventional copper nanoparticles don’t have.

(1E2-1) SPONTANEOUS SHRINKING SILICA NANOMEMBRANE FOR SOLID PHASE DNA EXTRACTION No.467
Yi Zhang 1, Ye Zhang 1, Brian Keeley 1, Alejandro Stark 1, Tzu-Huei Wang 1, 2
1Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
2Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland, USA

In this report, we describe a novel approach to fabricating silica nanomembrane based on the spontaneous shrinking of pre-stretched, heat-shrinkable polyolefin (PO) film coated with silica. The surface resulted from the surface wrinkling exhibits unique overlapping hierarchical structures ranging from nano to micro scale, which is mainly determined by the thicknesses of silica deposition. We have applied the nanomembrane to DNA purification, and have evaluated its efficiency by comparing with commercial magnetic particles. Results show that DNA extracted with nanomembrane has higher recovery yield than those extracted with particles. Thicker silica layer leads to wider specific areas thus larger DNA adsorption capacity and higher recovery yield. Furthermore, DNA isolated using the nanomembrane display higher purity and better integrity.

(1E2-2) SPECIAL PROPERTIES OF NEW TYPE CARBON-COPPER CORE-SHELL NANOPARTICLES COMPOSITE MATERIAL FABRICATED USING BIOMASS AS TEMPLATE .. No.162
Kun Lian 1, Yang Qi 1, Qingbin Wu 1, Xiaopeng Wang 2, Weifeng Li 3
1Suzhou School of Nano-Science and Nano-Engineering, Xi’an Jiaotong University, Suzhou Industrial Park, China. 215123
2Center for Advanced Microstructures and Devices, Louisiana State University, Baton Rouge, LA70806, USA
3Urban Forest Department, Southern University AgCenter, Baton Rouge, LA70813, USA

A new type of carbon-copper core-shell nanoparticles (CCCSNs) have been fabricated using biomass as template. CCCSNs, as made, are homogeneously embedded in carbon black as a composite material. The composite material can be further processed in different dimensions (from hundred nanometers to meters) based on application needs. The special carbon shell transformed from biomass can protect the copper core from oxidation in ambient environment for years, at the same time, let Cu show the typical anodic behavior in a wider potential range. The CCCSNs made from this innovative technology eliminates the detrimental impacts of conventional engineered nanoparticles usually have and provide the superior properties, including the low cost for fabrication, that conventional copper nanoparticles don’t have.

(1E2-3) ICE FISHING MICRO CHANNELS WITH SUB-MICRON PORES .. No.467
Justin Young-Hyun Kim 1, Yang Liu 2, Nicholas Sciammarella 2, Pervinmahal (Yok) Satsanunkkait 1, Yu-Chong Ta 2
1DMC R&D Center, Samsung Elec., Suwon, Korea
2Electrical Engineering, California Institute of Technology, Pasadena, USA

We report here a micro fluidic device with a controlled opening, which is used for accessing the fluid inside the micro channel from outside. The control of the reduced diameter of the opening pore is achieved by depositing a controlled Parylene layer on a starting larger opening hole. By changing the Parylene type and thickness, we can control the pore size and surface hydrophobicity. Due to the Laplace-Young’s pressure induced by the surface tension of the liquid in the vicinity of the pore, the internal fluid can be pressurized without leaking through the pore.

(1E2-4) STRONG SERS FROM GOLD NANOSTRUCTURE SANDWICHED ON SINGLE LAYER GRAPHENE FOR HIGH SENSITIVE BIOMOLECULE DETECTION ... No.462

Yi Zhang 1, Ye Zhang 1, Brian Keeley 1, Alejandro Stark 1, Tza-Huei Wang 1, 2
1Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
2Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland, USA

A new type of carbon-copper core-shell nanoparticles (CCCSNs) have been fabricated using biomass as template. CCCSNs, as made, are homogeneously embedded in carbon black as a composite material. The composite material can be further processed in different dimensions (from hundred nanometers to meters) based on application needs. The special carbon shell transformed from biomass can protect the copper core from oxidation in ambient environment for years, at the same time, let Cu show the typical anodic behavior in a wider potential range. The CCCSNs made from this innovative technology eliminates the detrimental impacts of conventional engineered nanoparticles usually have and provide the superior properties, including the low cost for fabrication, that conventional copper nanoparticles don’t have.
In this paper, we introduce a simple and high-throughput technique for developing a strong surface-enhanced-Raman-Scattering (SERS) sensor by sandwiching dual gold nanoparticle (GNPs) on single layer graphene (SLG) for biomolecule detection. Through this way, the overall nanostructure size can be much closer to 10 nm which is more suitable for individual biomolecule sensing.

Fabrication Process

By controlling the exposure doses of ultraviolet (UV) light, the floating structure is patterned at the first exposure, and then the anchor structure is patterned at the second exposure. Suspended magnetic polymer structures such as doubly-clamped beams and circular diaphragms can be fabricated after releasing from one development process. In addition, the functionalities and characterizations of the realized magnetic doubly-clamped beams were demonstrated and discussed. The resonant frequencies of the structures were measured under sinusoidal magnetic fields with an amplitude of 10.37 mT. The resonant frequencies of the structures with 5 mm and 6 mm in length are 5.21 kHz and 4.18 kHz, respectively.

Other Applications

This work presents a fabrication process for realizing suspended magnetic polymer structures with SU-8 photoresist dispersed with Fe3O4 nano-particle. The repeatable and durable use of Si and PDMS allowed mass production of nanopores arrays with desired sizes and shapes.

Summary

We have developed a facile, versatile and low-cost fabrication method for high-performance superlyophobic surfaces on various curable materials without significant deterioration, and dramatically diluted the fabrication cost. We believe this method may initialize the high-throughput, high-performance and low-cost SLS fabrication on various substrates.
In this study, HCNFES (hollow cylindrical near-field electrospinning) process was explored to fabricate permanent piezoelectricity of PVDF (polyvinylidene fluoride) piezoelectric nanofibers. Under high in-situ electric poling ($5 \times 10^6 - 10^7$ V/m) and strong mechanical stretching effect (rotating velocity of the tube collector: 900-1900 rpm, tangential speed 942-1890.3 mm/s) during HCNFES process (Fig. 1), large PVDF nanofiber array (see Fig. 2) with high piezoelectricity and quick crystallisation was demonstrated. PVDF nanofibers were spun on a PET (polyethylene terephthalate) substrate; silver paste was applied at both ends of fibers to fix their two ends tightly on a Cu (copper) foil electrode pair. The entire structure was packaged inside a thin flexible polymer to maintain its mechanical stability (Fig. 6). Repeatedly stretching and releasing the nanoharvester with a strain of 0.05% at 7 Hz vibration, a maximum peak voltage and current of -76 mV (Fig. 7(a)) and -10 nA (Fig. 7(b)) can be obtained, respectively.

1B2-5 FABRICATION OF ARRAYED ASPHERIC MICROLENS BY EXCIMER LASER AND APPLIED TO MASK-LESS BEAM PEN LITHOGRAPHY ...No.504

Chi-Cheng Chiu, Chi-Hao Chang, Cheng-Yun Lu and Yung-Chun Lee
National Cheng Kung University, Taiwan

This paper reports the fabrication on an array of microlenses which have an optimally designed aspheric lens profile for the application of mask-less beam pen lithography. The microlens array is fabricated using an excimer laser micromachining system along with a contour mask and a bi-axial scanning method. The microlenses are fabricated using a laboratory-built KrF excimer laser micromachining system. The overall machined area of the microlens array is 13 × 13 mm2 which consists of an array of 10^6 microlenses. To demonstrate the capability of this mask-less beam pen lithography system, a metallic pattern with an array of characters of “NCKU” that are first “written” by the UV beam pens on a thin AZ1500 PR layer. The minimal line-width of these characters is around 1.23 μm.

14:15-15:30

Session: 1C2 Nanomaterials 2 Room M2

Chair & Co-Chair: Wengang Wu & Chengkuo Lee

1C2-1 THE EFFECT OF OUT-OF-PLANE STRAIN ON THE ELECTRONIC PROPERTIES OF ZIGZAG GRAPHENE NANORIBBONS ...No.356

Xiaohui Hu, Xiao Xie, Litao Sun
SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, 210096 Nanjing, China

We have studied the influence of out-of-plane strain on the electronic properties of zigzag graphene nanoribbons (ZGNRs) using first principles methods. We find that the electronic properties of ZGNRs are highly sensitive to the strains. As the strain increases, the band gap first remains almost invariant and then decreases monotonically, which could be used to design high precision strain sensors. ZGNRs based sensors would possess higher sensitivity and quicker response compared to the conventional sensors.

1C2-2 CONTROLLABLE PREPARATION AND CHARACTERIZATION OF GRAPHENE-BASED COBALT OXIDE NANOCOMPOSITES ...No.439

Jing Ji, Kaibo Yin, Litao Sun
SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing, China

Here we introduce a facile hydrothermal synthesis for the controllable growth of cobalt oxide (Co$_3$O$_4$) nanoparticles onto graphene nanostructures. The Co$_3$O$_4$ particles were monodispersive with a grain size less than 10 nm and homogeneously anchored on graphene sheets. The effects of oxidants, reaction temperatures, and reaction times on the microstructures of final products were investigated, respectively. The obtained material was characterized by transmission electron microscopy (TEM) and high-resolution TEM (HREM).

1C2-3 SPRAY DEPOSITED CuInS$_2$/TiO$_2$ THIN FILM SOLAR CELLS ...No.478

J.Kaliang, S.Chaisitsak
Department of Electronics Engineering, Engineering King Mongkut’s Institute of Technology Ladkrabang, Ladkrabang, Thailand

Copper indium sulphide (CIS) solar cells with Ag/CIS/TiO$_2$/FTO/glass structure were fabricated using nonvacuum methods. The nanoporous TiO$_2$ and nanocrystalline CIS films were prepared by screen-printing and spray pyrolysis techniques, respectively. The obtained films were examined using field-emission scanning electron microscopy and X-ray diffraction. The solar cell properties were characterized under AM 1.5. The porous nature of TiO$_2$ layer was found to cause the formation of nanocrystalline CIS with a very small grain size within the TiO$_2$ matrix. The photocurrent could not be observed in any devices without a TiO$_2$ layer (i.e. CIS/FTO), while it was detected for the devices consisting of TiO$_2$ layer (i.e. CIS/TiO$_2$/FTO). The thickness of TiO$_2$ layer was optimized for maximum efficiency. The highest efficiency obtained solar cells was 2.29×10^{-3}% (Voc: 0.147 V, Jsc: 6.52×102/cm2, FF: 0.24) with a 3-μm thick TiO$_2$.

1C2-4 INDENTATION-INDUCED TWO-WAY SHAPE-MEMORY EFFECT IN NiTi ...No.491

Nicolas J. Peter, Mareike Fresenberger, Erwei Qin, Carl P. Frick, Eduard Arzt, Andreas S. Schneider
Germany No.298

The indentation-induced shape-memory behavior in both an aged and a solutionized austenitic nickel-titanium (NiTi) alloy was investigated by Vickers indentation. The depth recovery ratio of the indents as well as the formation of protrusions on the surface after planarization was analyzed after the sample was heated above and cooled below the phase transformation temperature using a white light interferometer. For comparison a solutionized, fully austenitic sample was subjected to the same indentation parameters and temperature changes. The results show that indentation induces a one-way and two-way shape-memory effect in the aged material containing small fractions of martensite and precipitates. In contrast, the solutionized fully austenitic sample shows less pronounced one-way compared to the aged material and no two-way shape recovery. This phenomenon is discussed in terms of martensite stabilization by precipitates and dislocations.

(C12-5) ORGANIC-INORGANIC LIPID NANOFIBERS ENABLING ANTIBODY IMMOBILIZATION AND CELL CAPTURE

14:15-15:30 Session: 1D2 Cross-Starit Invited Session 2 Room M3

Chair & Co-Chair: Chao-Min Cheng & Baoqin Chen

(C12-1) ADVANCES OF CMOS-MEMS TECHNOLOGY FOR RESONATOR APPLICATIONS

1School of Electrical and Mechanical Engineering, Xidian University, China
2Physics Department, Northwest University, China
3School of Mechanical Engineering and Automation, Fuzhou University, China
Base on Tersoff and Lennard-Jones potentials, molecular dynamics simulation of nanoindentation experiment on single layer rectangular graphene film is carried out. A typical force-displacement curve is obtained and the effects of various factors including indenter radius, velocities as well as boundary conditions on the simulation results are discussed. The Young's modulus and the strength of the graphene are measured as 1 terapascals and 90 gigapascals, respectively.

(C12-2) DISSOLVABLE CROSS-LINKED POLYMER MATERIAL FOR UV-CURING NANOIMPRINT LITHOGRAPHY

National Laboratory of Solid State Microstructures, Nanjing University, Nanjing, 210093, China
Insolubility of highly cross-linked nanoimprint resist is a serious problem for template cleaning and lift-off process. The ability to produce high modulus, decomposable cross-linked resist is very attractive. In this paper, we designed and synthesized a diacrylate cyclic degradable cross-linker, 2,10-diacyloyloxyethyl-1,4,9,12-tetraoxaspiro[4.2.4.2]tetradecane (DAMTT). Resist formulated with DAMTT exhibits excellent mechanical properties for high resolution imprint. High resolution patterns are faithfully imprinted on silicon substrates by using the degradable resist. DAMTT incorporated with silicone is high O2 etch resistance and is used as etch barrier to fabricate high aspect ratio structures. A lift-off process could be solely achieved by the same UV-cured resist without the assistance of the thermal plastic under layer, and it can also be used as a lift-off-layer instead of thermal plastic polymers. The cross-linked network can rapidly hydrolyze in boiled 10% p-toluene sulfonic acid solution and foul template is completely cleaned.

(C12-3) OVIDUCT-MIMETIC CHIP FOR SPERM SEPARATION AND OOCYTE MANIPULATION TO ENHANCE THE PROBABILITY OF FERTILIZATION FOR OLIGOZOOSPERMIA PATIENT

1INM-Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
2University of Wyoming, Mechanical Engineering Department, 1000 East University Avenue, Laramie, WY 82071, USA
3Saarland University, 66123 Saarbrücken, Germany
The indentation-induced shape-memory behavior in both an aged and a solutionized austenitic nickel-titanium (NiTi) alloy was investigated by Vickers indentation. The depth recovery ratio of the indents as well as the formation of protrusions on the surface after planarization was analyzed after the sample was heated above and cooled below the phase transformation temperature using a white light interferometer. For comparison a solutionized, fully austenitic sample was subjected to the same indentation parameters and temperature changes. The results show that indentation induces a one-way and two-way shape-memory effect in the aged material containing small fractions of martensite and precipitates. In contrast, the solutionized fully austenitic sample shows less pronounced one-way compared to the aged material and no two-way shape recovery. This phenomenon is discussed in terms of martensite stabilization by precipitates and dislocations.

(C12-6) MOLECULAR DYNAMICS SIMULATION OF NANOINDENTATION FOR SINGLE-LAYER RECTANGULAR GRAPHENE FILM

Wedong Wang 1, Yongjie Zhan 2, Minglin Li 1
1School of Electrical and Mechanical Engineering, Xidian University, China
2Physics Department, Northwest University, China
Base on Tersoff and Lennard-Jones potentials, molecular dynamics simulation of nanoindentation experiment on single layer rectangular graphene film is carried out. A typical force-displacement curve is obtained and the effects of various factors including indenter radius, velocities as well as boundary conditions on the simulation results are discussed. The Young's modulus and the strength of the graphene are measured as 1 terapascals and 90 gigapascals, respectively.
This study presents an imitation of oviposition microfluidic dielectrophoresis chip system. In this research, ICR mouse’s oocyte trapped by
insulator-structure microchannel of a dielectrophoresis system will be shown. In order to reduce the impact and destruction of cells, this study adopts
dielectrophoresis force to manipulate the cell. Imitation of In Vitro Fertilization, the natural fertilization of sperm and oocytes in the microfluidic
channel, the collision frequency between sperm and oocyte plays the success key role of the IVF. The numerical simulation software, QFDrC, was used
to reveal the position of high and low electric field distribution in microchannel. The positive dielectrophoresis response of oocyte was exhibited with the
frequency at 1 MHz, the oocyte will move to the region with high electric field density. The pattern of insulating structure was fabricated by SU-8/3050
to generate non-uniform electric field to trap with positive dielectrophoresis finally. Finally, the positive DEP was used to drive the position of cells in the
microchannel structures.

(IE2-4) ELECTRO-THERMAL MICRO ACTUATORS BY NI-BASED MICROMACHINING PROCESS……………….No.392
Wenyang Hsu1, Yu-Ting Cheng2
1Department of Mechanical Engineering, National Chiao Tung University, HsinChu, Taiwan
2Department of Electronics Engineering, National Chiao Tung University, HsinChu, Taiwan

Comparing to silicon-based materials, metal can provide lower resistivity and higher coefficient of thermal expansion. Here several novel electro-thermal
micro actuators developed in our group by Si-based and Ni-based micromachining process are presented, including long-shot beam actuator,
long-stroke actuator, and lifted 3D actuator through micro resistance welding. Also, by incorporating nano particles in electroplating process, Ni-based
micro actuators developed in our group by Si-based and Ni-based micromachining process are presented, including long-shot beam actuator,
long-stroke actuator, and lifted 3D actuator through micro resistance welding. Also, by incorporating nano particles in electroplating process, Ni-based
nano composite is found to provide even higher coefficient of thermal expansion than pure Ni to further enhance performance of electro-thermal micro
actuator.

(IE2-4) DUAL-GATE SILICON CARBIDE (SiC) LATERAL NANOELECTROMECHANICAL SWITCHES …….No.281
Tina He, Rui Yang, Srirath Raiogpal, Swapr K. Bhunia, Mehhan Mehnegany, Philip X.-L. Feng
Electrical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA

We present demonstration and experimental results of four-terminal nanoscale electromechanical switches with a novel dual-gate design in a lateral
configuration based on poly-crystalline silicon carbide (poly-SiC) nanocantilevers. The switches operate at both room temperature and high temperature up
to 700°C in ambient air with enhanced control over the distributed electrostatic actuation force, and also enable recovery from stiction at contact.
We have experimentally demonstrated multiple switching cycles of these nanomechanical switches with different actuation control schemes, and active
release from stiction by exploiting a repulsive mechanism. In combination with modeling of cantilever deflection, the experiments help reveal the
coupled electromechanical behavior of the device when making contact during switching operations, and suggest possible correlation between the switch
degradation observed over cycles and the elastic deformation of nanocantilevers.

(IE2-2) A BI-STABLE SILICON NANOFIN NANOELECTROMECHANICAL SWITCH BASED ON VAN DER WAALS
FORCE FOR NON-VOLATILE MEMORY APPLICATIONS ……………………………………………………………………..No.283
Bo Woon Soon1, Naiab Singh1, Julius Minglin Tsai1 and Chengkuo Lee2
1Institute of Microelectronics, A*STAR (Agency for Science, Technology and Research), Singapore
2Department of Electrical and Computer Engineering, National University of Singapore, Singapore

We present a silicon nanofin (Si-NF) which can be actuated bi-directionally by electrostatic force between two contact surfaces. The switch is able to
maintain its contact leveraging on van der Waals force that holds the Si-NF to either terminal without on-hold bias, thus showing a bi-stable hysteresis
behavior. The measured pull-in voltage V_{PI} and V_{RESET} is 10V and -12V respectively, confirming that the switch can be reset by the opposite
electrode. Since the switch toggles between two stable states, therefore it can be an ideal device for non-volatile memory (NVM) application.

(IE2-3) THERMOELECTRIC PROPERTIES INVESTIGATION OF SINGLE NANOWIRES BY UTILIZING A
THERMOELECTRIC NANOWIRE CHARACTERIZATION PLATFORM…………………………………………………No.351
Zhi Wang1, Johannes Ruhlhammer1, Shyam Adhikari1, Raimar Rostek1, Dominik Moser1, Oliver Paul2, Tae-Deuk Rhee3, Ruediger
Mitdank3, Saskia F. Fischer1, William Toelner4, Kornelius Nielsch4, Michael Kroener1 and Peter Woias1
1Institute for Angewandte Physik, Universität Hamburg, Germany
2Department of Microsystems Engineering - IMTEK, University of Freiburg, Germany
3Novel Materials, Humboldt-Universität zu Berlin, Germany
4Laboratory for Design of Microsystems, Department of Microsystems Engineering - IMTEK, University of Freiburg, Germany

We demonstrate the design and fabrication of a novel micromachined Thermoelectric Nanowire Characterization Platform (TNCP) which is utilized to
characterize the thermoelectric properties of various nanowires. Single nanowire is assembled onto the pre-fabricated TNCP by means of
dielectrophoresis (DEP) in combination with a water droplet evaporation scheme. After assembly, a reliable ohmic contact is generated between the
bismuth telluride (Bi$_2$Te$_3$) nanowire and the underlying electrodes by means of scanning electron microscope (SEM) focused electron beam-induced
deposition (EBID). Finally, the electrical conductivity and Seebeck coefficient of Silver (Ag) and Bi$_2$Te$_3$ nanowires are investigated and presented.

(IE2-4) CONTROLLABLE FORMATION AND OPTICAL CHARACTERIZATION OF SILICON NANOCONDUCTOR-FOREST
USING SF$_6$/C$_4$F$_8$ IN CYCLIC ETCHING-PASSIVATION PROCESS …………………………………………………………….No.453
This paper reports a nanocone-forest silicon surface fabricated by an improved DRIE process using SF6/C4F8 in cyclic etching-passivation process, which is maskless, controllable, effective and large-size. As well known, optical property of textured silicon surface is determined mainly by its surface structure, and surface structure is determined by process conditions. In this work, process conditions during the experiment, like etching process parameters, pretreatment, uniformity control and patterned silicon etching, are tested and discussed. Based on these controllable process conditions, nanocone-forest with an average height of 0.4-5μm, aspect ratio of 1-8 and density of 3-30 per 4μm2 formed. By analyzing the influences of nanostructure parameters on optical property, it’s concluded that high aspect ratio, high density and small height of nanostructure could result in ultra-low reflectance. The optical reflectance of two samples has been reduced to below 0.22% and 0.16% of the solar spectrum, respectively.

Session: 1B3

Chair: Joan Bausells

Co-Chair: Shiyuan Liu

Room ID: 391,438,450,488,500,519

Coffee Break and Exhibition

Session: 1B3

Topic: Micro/nano Fabrication & Metrology

Chair: Joan Bausells

Co-Chair: Shiyuan Liu

Room: F1

Session: 1C3

Topic: Carbon Nanotube & Graphene based Devices

Chair: Jianning Ding

Room: M2

Session: 1D3

Topic: Cross-Star invit ed Session

Chair: Rong Zhu

Room: M3

Session: 1E3

Topic: EHI CM Ho Microfluidics Award

Chair: Chihming Ho

Room: 3

Chair: Gwo bin Lee

Room: 517,529,108,196,109

Session: 1D3

Chair: Jiwu Liu

Room: F1

Session: 1E3

Chair: Gwo bin Lee

Room: 517,529,108,196,109

Session: 1F3

Chair: Gwo bin Lee

Room: 517,529,108,196,109

Session: 1G3

Chair: Gwo bin Lee

Room: 517,529,108,196,109

Session: 1H3

Chair: Gwo bin Lee

Room: 517,529,108,196,109

Session: 1I3

Chair: Gwo bin Lee

Room: 517,529,108,196,109

Session: 1J3

Chair: Gwo bin Lee

Room: 517,529,108,196,109

Session: 1K3

Chair: Gwo bin Lee

Room: 517,529,108,196,109

Session: 1L3

Chair: Gwo bin Lee

Room: 517,529,108,196,109

Session: 1M3

Chair: Gwo bin Lee

Room: 517,529,108,196,109

Session: 1N3

Chair: Gwo bin Lee

Room: 517,529,108,196,109

Session: 1O3

Chair: Gwo bin Lee

Room: 517,529,108,196,109

Session: 1P3

Chair: Gwo bin Lee

Room: 517,529,108,196,109

Session: 1Q3

Chair: Gwo bin Lee

Room: 517,529,108,196,109

Session: 1R3

Chair: Gwo bin Lee

Room: 517,529,108,196,109

Session: 1S3

Chair: Gwo bin Lee

Room: 517,529,108,196,109

Session: 1T3

Chair: Gwo bin Lee

Room: 517,529,108,196,109

Session: 1U3

Chair: Gwo bin Lee

Room: 517,529,108,196,109

Session: 1V3

Chair: Gwo bin Lee

Room: 517,529,108,196,109

Session: 1W3

Chair: Gwo bin Lee

Room: 517,529,108,196,109

Session: 1X3

Chair: Gwo bin Lee

Room: 517,529,108,196,109

Session: 1Y3

Chair: Gwo bin Lee

Room: 517,529,108,196,109

Session: 1Z3

Chair: Gwo bin Lee

Room: 517,529,108,196,109

Session: 1AB3

Chair: Gwo bin Lee

Room: 517,529,108,196,109

Session: 1AC3

Chair: Gwo bin Lee

Room: 517,529,108,196,109

Session: 1AD3

Chair: Gwo bin Lee

Room: 517,529,108,196,109

Session: 1AE3

Chair: Gwo bin Lee

Room: 517,529,108,196,109

Session: 1AF3

Chair: Gwo bin Lee

Room: 517,529,108,196,109

Session: 1AG3

Chair: Gwo bin Lee

Room: 517,529,108,196,109

Session: 1AH3

Chair: Gwo bin Lee

Room: 517,529,108,196,109

Session: 1AI3

Chair: Gwo bin Lee

Room: 517,529,108,196,109

Session: 1AJ3

Chair: Gwo bin Lee

Room: 517,529,108,196,109

Session: 1AK3

Chair: Gwo bin Lee

Room: 517,529,108,196,109

Session: 1AL3

Chair: Gwo bin Lee

Room: 517,529,108,196,109

Session: 1AM3

Chair: Gwo bin Lee

Room: 517,529,108,196,109

Session: 1AN3

Chair: Gwo bin Lee

Room: 517,529,108,196,109

Session: 1AO3

Chair: Gwo bin Lee

Room: 517,529,108,196,109

Session: 1AP3

Chair: Gwo bin Lee

Room: 517,529,108,196,109

Session: 1AQ3

Chair: Gwo bin Lee

Room: 517,529,108,196,109

Session: 1AR3

Chair: Gwo bin Lee

Room: 517,529,108,196,109

Session: 1AS3

Chair: Gwo bin Lee

Room: 517,529,108,196,109

Session: 1AT3

Chair: Gwo bin Lee

Room: 517,529,108,196,109

Session: 1AU3

Chair: Gwo bin Lee

Room: 517,529,108,196,109

Session: 1AV3

Chair: Gwo bin Lee

Room: 517,529,108,196,109

Session: 1AW3

Chair: Gwo bin Lee

Room: 517,529,108,196,109

Session: 1AX3

Chair: Gwo bin Lee

Room: 517,529,108,196,109

Session: 1AY3

Chair: Gwo bin Lee

Room: 517,529,108,196,109

Session: 1AZ3

Chair: Gwo bin Lee

Room: 517,529,108,196,109

Session: 1BA3

Chair: Gwo bin Lee

Room: 517,529,108,196,109

Session: 1CA3

Chair: Gwo bin Lee

Room: 517,529,108,196,109
comparison, SF$_6$/O$_2$ chemistry generates very different etching profiles, causing trenches both in vertical and lateral directions. Our PECVD SiC nanostuctures are promising candidates for robust biosensing and nanofiltration applications.

Abstract: Nanostructure Fabricated by Laser Direct Writing with Water Droplets

Y. J. Chang, C. H. Chang, C. C. Ho, J. C. Hsu, C. L. Kuo
Department of Mechanical Engineering, National Yunlin University of Science and Technology, Douliou, Taiwan

Nanopatterning using near-field optics has shown great potential for industrial applications. A novel application of water droplets to this technology is proposed in this study. With a hydrophobic layer and controlled substrate temperature, a layer of randomly distributed water droplets with a high contact angle is formed on the substrate. These liquid droplets can be used as lenses to enhance the laser intensity at the bottom of the droplets. As a result, nanoscale holes can be formed on the substrate by laser ablation. We have fabricated holes with a diameter of 500nm at the substrate temperature of 12°C. The depth of the holes ranges from 0.1µm to 0.9µm, depending on the diameter of droplets.

Polymeric Hemispherical Pico-Liter Micro Cups Fabricated by Inkjet Printing

Jian Zhang and Bo Cui
Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Ontario, Canada

Electron beam resist is typically applied by spin-coating, which is not suitable for coating on non-flat surfaces, such as a scanning probe cantilever or the end or side of an optical fiber. Here we present electron beam lithography result on non-flat surface (an AFM cantilever) using a suitably adapted resist, which is thermally evaporated, and can thus be coated on any surface. We achieved high resolution of ~30 nm using this evaporated resist.

Protein Micro/Nano-Elements for Green Biophotonics Via Femtosecond Laser Direct Writing

Yan-Lu Sun, Wen-Fei Dong, Hong-Bo Sun
State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, China

In this paper, we present the promising protein-FsLDW approach in the construction of protein-based 3D optical microdevices, for example, microlenses. Based on the valuable characteristics, protein-based optical micro/nano-elements have great potential for micro/nano-bio-optics and bionics, etc.

Session: 1C3

Carbon Nanotube & Graphen based Devices

Room M2

Chair & Co-Chair: Jianning Ding & Bo Cui
This paper reported a technique for tuning graphene semiconductor properties by introducing nanoholes into single- and few-layer graphene films. A simple nanofabrication technique has been demonstrated for making periodic nanoholes on pristine graphene in a mask-free and time-efficient manner via direct e-beam writing which was done by simply scanning the graphene area that is covered with EBL resist and then etching the scanned area by oxygen plasma. Parameters of e-beam lithography (EBL) (acceleration voltage, beam current, EBL resist thickness, and scanning area) were fine-tuned to optimize the dimensions of the nanomesh. Finally, Graphene field effect transistors were fabricated and characterized experimentally.

(1C3-3) DESIGN, FABRICATION, AND CHARACTERIZATION OF GRAPHENE THERMISTOR ………………….. No.496
Haider Al-Mumen, Fubo Rao, Lixin Dong and Wen Li
Electrical and Computer Engineering, Michigan State University, USA
This paper reported a new application of graphene that is graphened thermistor. Mono-layer, bi-layer and few-layer graphene devices with different dimensions were designed and fabricated. Temperature sensing behavior of graphene has been studied in a small temperature range from room temperature (RT) to 80°C because this range is important in electronic instrumentations and integrated circuit design. Thermal inertia of the graphene was studied at a temperature of 80°C and the sensing behavior was characterized by measuring the time response of the normalized resistances. Our preliminary results demonstrated a higher negative temperature coefficient of the bi-layer graphene those of mono-layer and few-layer graphenes. In addition, engineered graphene resistance based on its dimension has been investigated. This technique provides a strong candidate for temperature sensing in the micro and nano industrial applications with high reliability, high sensitivity and low cost.

(1C3-4) MICROELECTROFORMING OF A NICKEL NOZZLE PLATE FEATURED WITH ANTI-STICITION FOR A PIEZOELECTRIC ATOMIZER …………………………………………………………….. No.264
Yu-Wen Kang, Yo-Wei Chang, Chih-Cheng Huang, Yu-Lin Wang, Chih-Cheng Huang, You-Ren Hsu, Yu-Lin Wang, Chi-Cheng Huang, You-Ren Hsu, Yen-Wen Kang
Department of Mechanical Engineering, National Chiao Tung University, Taiwan
AlGaN/GaN high electron mobility transistors (HEMTs) were immobilized with various receptors, including antibodies, duplex DNA, and HIV reverse transcriptase (RT) enzymes to detect ligands, including peptides, SARS proteins, and HIV d

(1C3-5) LABEL-FREE SEPARATION AND SORTING OF HUMAN MONOCYTES AND T-CELLS BY ELECTROFRETTING AND DIELECTROPHORESIS ………………………………………………………….. No.399
Cheng-Yeh Huang, Min-Yu Chang, Shih-Kang Fan , A mir M. Ghaemmaghami, and Wensyang Hsu
1Department of Mechanical Engineering, National Chiao Tung University, Taiwan
2Department of Materials Science and Engineering, National Chiao Tung University, Taiwan
3Department of Mechanical Engineering, National Taiwan University, Taiwan
4Allergy Research Group, Faculty of Medicine, University of Nottingham, United Kingdom
We report a label-free separation and sorting approach based on electrowetting-on-dielectric (EWOD) and dielectrophoresis (DEP) to manipulate human monocyte (THP-1) and T-cell (Jurkat) lines in droplets without any impact on cell viability. In addition to separating cells, this device provides a platform to study cell-cell interactions and migration before the separation.

(1C3-6) A CAPILLARY-BASED MICROFLUIDIC DEVICE INCORPORATING OPTICAL FIBERS FOR FLOW INDUCED DISPERSION ANALYSIS ………………………………………………….. No.460
Guisheng Zhuang, Nicklas N. Poulsen, Nickolaj J. Petersen, Jesper Østergaard, Henrik Jensen
Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
In this paper, we describe a capillary-based microfluidic device utilizing flow induced dispersion analysis (FIDA) for quantitative characterization of biomarkers. The microfluidic device is fabricated by micromilling technology and has incorporated buried optical fibers for light detection. The angle and distance between the fiber guiding the excitation light source and the fiber collecting fluorescent emission light were optimized to enhance signal-to-noise ratio (SNR) and limit of detection (LOD). The prototype achieves a LOD of 50 nM for the fluorescein indicator by using a low-cost miniature Fiber Optic Spectrometer. The FIDA-based procedure employing fluorescein as the indicator and human serum albumin (HSA) as the analyte is carried out in the microfluidic device.

15:45-17:00 Session: 1D3 Cross-Starit Invited Session 3 Room M3
Chair&Co-Chair: Rong Zhu & Shikang Fan
(1D3-1) IDENTIFICATION OF LIGAND-RECEPTOR BINDING AFFINITY USING ALGAN/GAN HIGH ELECTRON MOBILITY TRANSISTORS AND BINDING-SITE MODELS ………………………………………. No.276
Yu-Lin Wang, Chih-Cheng Huang, You-Ren Hsu, Yen-Wen Kang
Institute of Nanoengineering and Microsystems, National Tsing Hua University, Taiwan
AlGaNGaN high electron mobility transistors (HEMTs) were immobilized with various receptors, including antibodies, duplex DNA, and HIV reverse transcriptase (RT) enzymes to detect ligands, including peptides, SARS proteins, and HIV drugs, respectively. Signals generated by the sensors were fitted into binding-site models and analyzed. The dissociation constants of the ligand-receptor pairs and the number of binding-sites on receptors were resolved. The HEMTs and the models were demonstrated to be useful for drug developments and for elucidating SARS virus replication.
This paper presents the design and fabrication of a MEMS logic gate that can perform either NAND or NOR gate functions using the same mechanical structure, but different electrical interconnects. Two fabrication processes are employed to fabricate this device, which are an in-house developed CMOS-compatible process and a foundry provided CMOS-MEMS process. In the line of in-house process, the experimental results confirm the logic function of the fabricated device. In the line of foundry process, the logic function can only be verified by device's mechanical movements because the contact feature of the device is damaged during the fabrication process. Two methods are then proposed to tackle this problem. One uses titanium nitride (TiN) as the contact material, the other one uses "electrode-less nickel and immersion gold (ENIG)" to deposit gold film on top of aluminum. Both methods are underway and partial success has been observed from experimental data.

Flexible Polymer-Based Manufacturing Technology for Microstructure and Its Application

Weizheng Yuan, Zefan Shen, Chengjian Zhuang, Pengfei Zhu, Jinjun Deng, Binghe Ma

Key Laboratory of Micro/Nano Systems for Aerospace, Ministry of Education, Northwestern Polytechnical University, Xi'an, China

The purpose of this paper is to introduce flexible polymer-based manufacturing technology for microstructure and its application. Traditional silicon-based MEMS fabrication techniques cannot meet the requirement of flexible fit for the aircraft complex surface. However, the research on flexible thermal sensor array and fully flexible micro balloon actuator array has revealed interesting results. Through wind tunnel test, the flexible thermal sensing belt can be applied on highly curved non-planar surfaces to measure flow with minimal invasion and the fully flexible micro balloon actuator to achieve the goals of boundary layer separation control, lift enhancement, etc. Polymer compatible micromachining technology with consideration of waterproof coating was developed. UAV flight test verifies the ability of maneuver control of micro actuator. In the future work, micro sensor and actuator based on flexible polymer can be combined into a closed-loop control system, and to construct aerodynamic smart skin system for aircraft.

Fabrication of Colloidal Crystals and Their Inverse Opals for Engineering Applications

Chen-Hong Liao¹, Yu-Ting Cheng², Pu-Wei Wu¹

¹Department of Materials Science and Engineering, National Chiao Tung University, Hsin-chu 300, Taiwan
²Department of Electronics Engineering, National Chiao Tung University, Hsin-chu 300, Taiwan

We demonstrate a facile fabrication scheme to produce colloidal crystals and their inverse opals in large quantity and reduced defects. The preparation method for the colloidal crystals involves the synthesis of monodisperse polystyrene (PS) microspheres (300-800 nm) and electrophoretic deposition of PS colloids in planar or cylindrical forms. After proper optimization of processing parameters, we are able to obtain colloidal crystals in 5×5 cm² with adjustable layer/thickness, and their surface reveals superb uniformity. To produce an inverse structure, the colloidal crystals are used as a template to obtain an interconnected porous skeleton is formed. With superb structural integrity, the inverse opals can be easily detached from the substrate becoming a free-standing opaline film. Materials characterizations including XRD, nano-indentation, porosity measurements, SEM, electrical conductivity, and α-step are carried out. Lastly, we demonstrate several engineering applications (electrocatalytic, light-emitting diode, wetting and electrowetting on dielectric) in which the colloidal crystals and inverse opals provide clear advantages in performance improvements. In addition, we adopt the same process in micrometer-sized channels on a silicon wafer to demonstrate universality of our fabrication scheme and explore possible applications in MEMS applications.

Integrated Dual Grating Polymer Microbeams for Bio-Chemical Sensing in Liquid Environment

Jun-yang FENG, Xiong-ying YE, Yuan-fang SHANG, Kang WU, Feng CHEN

State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China

A polymer microbeam array integrated with dual gratings for interferometric measurement was developed for biochemical sensing in liquid environment. An Au-coated polymide microbeam structure suspending a centered plate was designed to realize out-plane translational motion. The microbeam array chip was fabricated on a glass substrate based on surface micromachining process. Two adjacent metal gratings corresponding to a microbeam were patterned inside and outside of a groove with the depth of 55 nm to form a phase shift of π/2 to extend the displacement measurement range. The interferometric intensities from the two gratings were detected using a CCD image measurement setup and the displacement of a microbeam was obtained by alternately using intensity signals from the two corresponding gratings. The preliminary experimental results in ethanol show that the detection method with the polymer microbeam chip is available in liquid environment. And antibody-antigen binding detection was also carried out with a rabbit IgG immobilized chip in 100μg/ml goat anti-rabbit IgG solution.

Physical Modulation Based Cell Manipulation in Microfluidic Devices

Jing Zhu¹, Junyi Shang¹, Yuan Jia¹, Kun Lai², David Brenner², Qiao Lin²

¹Department of Mechanical Engineering, ²Department of Radiation Oncology, and ³Center for Radiological Research, Columbia
Deoxyribonucleic acid (DNA) origami [1] is expected to be a nanoscale functional block for Nano Electro Mechanical Systems (NEMS). It can be used in cell manipulation has important applications in biological research and clinical diagnostics. We integrate microfabrication with physical modulation to enable selective and flexible cell manipulation, such as isolation, trapping and recovery of cells. We use the strong temperature-dependence of affinity binding between aptamers and cells to enable specific capture and controlled temperature-mediated release of cells. We also exploit the large compliance of elastomers to create an array of cell-trapping microstructures, whose dimensions can be mechanically modulated to capture a predetermined number of cells. Thus, enhanced utility and flexibility for practical applications can be attained, as demonstrated by specific capture and temperature-mediated release of CCRF-CEM cells, as well as tunable trapping of MCF-7 cells.

ELECTROPORATION

We have developed a novel microchip aiming to rapidly optimize the release of CCRF-CEM cells, as well as tunable trapping of MCF-7 cells.

A SYMMETRICAL HYPERBOLIC FORMATTED MICROCHIP FOR RAPID OPTIMIZATION OF ELECTROPORATION

A dynamic filling experiment using PBS with HepG2 tumor cells is performed for observing the attachment behavior in capillaries. A PDMS microchannel mimicking the capillary blood vessel is fabricated by the soft lithography. With treating the PDMS microchannels by different plasmas, the corresponding surface roughness (Ra) data are experimentally measured by AFM. Using these PDMS microchannels well defined by proper Ra values, liquid streams with microbeads and living HepG2 tumor cells are filled in, respectively. The microbead and cell attachment areas in the PDMS microchannel have been recorded dynamically with 10 min interval. Finally, the authors qualitatively discussed the surface roughness effect on the particle or cell attachment in a PDMS microchannel.

MANIPULATION OF DNA ORIGAMI NANOTUBES IN LIQUID USING A PROGRAMMABLE TAPPING MODE AFM

The manipulation of DNA origami nanotubes with 6 nm in diameter and 400 nm in length placed on a mica substrate was executed by tapping mode AFM with 0-10 nm amplitude. The acting vertical force from the AFM tip to a DNA origami nanotube was calculated to be 25-30 nN numerically by using Simulink software (MathWorks). Experimental results showed that ~80% samples can be successfully manipulated if the tapping mode AFM tip amplitude is 3-4 nm.
Day 2: Tuesday, April 9, 2013

8:30-9:15 2A1 Plenary Speaker 2: Dr. Albert (“Al”) P. Pisano (Watson Auditorium)
Chair: Zhaoying Zhou

(2A1-PS-2) HARSH ENVIRONMENT MEMS FOR ENERGY & POWER APPLICATIONS SINGLE-CHIP, SELF-POWERED, WIRELESS SENSOR SYSTEMS …… No.2

Albert (“Al”) P. Pisano
University of California at Berkeley, USA

Current research and future work will be presented about extreme harsh environment, MEMS wireless sensors fabricated from silicon carbide and aluminum nitride. Harsh environment is defined as temperature at or above 600°C, pressure at or above 300 atm, and shock at or above 50,000 G. These sensors are being integrated with silicon carbide electronics and aluminum nitride energy harvesting devices to build a single-chip, self-powered, wireless sensor system. This wireless sensor system is applicable to power plants, geothermal energy, automobile engines, gas turbines, and other industrial machines that operate at high temperature. A number of thin film materials, suitable for fabrication via MEMS methods, will be described as candidates for application to these sensors. Then, a number of sensors, both existing and under development, will be presented. Integration into silicon carbide electronics will be addressed, and new research results for the fabrication and testing of silicon carbide electronic devices (both active and passive) will be presented. The use of aluminum nitride as a RF component in harsh environments will be described and new results for temperature-compensated radio filters shown. A future vision of a single-chip, self-powered, wireless sensor system will be described.

9:15-9:45 2A2 Keynote Speaker 5: David R. S. Cumming (Watson Auditorium)
Chair: Tie Li & Juergen Brugger

(2A2-KS-5) CMOS INTEGRATION AND SENSING …… No.21

David R. S. Cumming
Division of Electronics and Nanoscale Engineering, School of Engineering, University of Glasgow, Rankine Building, Oakfield Avenue, Glasgow G12 8LT, United Kingdom

Complementary Metal Oxide Semiconductor (CMOS) underpins all modern microelectronics technology. Whilst dominant in computing and communications components and systems, CMOS has also been hugely influential in imaging technology, displacing other methods of making semiconductor focal plane array sensors such as CCD. In this paper I will describe new developments in CMOS sensing technology, including the CMOS proton sensing array that has growing influence in instrumentation for analytical chemistry and next generation gene sequencing. I will further discuss new sensor technologies based on CMOS for use in terahertz imaging, and the application of emerging technologies in metamaterials and surface plasmon resonance that are set to have a major impact on integrated sensing technologies. In so doing I will show how CMOS is now at the confluence of many strands of research, far outside its original application domain, and how microelectronics and nanoscale engineering has an impact on some of the most demanding technological applications of today.

9:45-10:15 2A2 Keynote Speaker 6: Isao Shimoyama (Watson Auditorium)
Chair: Tie Li & Juergen Brugger

(2A2-KS-6) PIEZORISTIVE CANTILEVER TYPE HIGH SENSITIVE DIFFERENTIAL PRESSURE SENSOR …No.25

Hidetoshi Takahashi and Isao Shimoyama
Information and Robot Technology Research Initiative, The University of Tokyo, Tokyo, Japan

This paper reports on a differential pressure sensor using a piezoresitive cantilever. Because the three edges of the cantilever are freed up, the sensor has a higher sensitivity than that of a traditional diaphragm sensor. Four types of the cantilever size was designed and fabricated. The highest sensitivity and resolution to differential pressure were 5.6×10^-4 Pa^-1, 0.028 Pa, respectively.

10:15-10:45 Coffee Break and Exhibition

10:45-11:15 2A3 Keynote Speaker 7: Mark G. Allen (Watson Auditorium)
Chair: Hans Zappe & Yao-Joe Yang

(2A3-KS-7) AN ELECTROPLATING-BASED APPROACH TO VOLUMETRIC NANOMANUFACTURING AND ITS APPLICATION TO ENERGY CONVERSION AND STORAGE…………………………………………………………………………………………………… No.31

Mark G. Allen
School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA

The manufacture of materials with bulk volumes and precisely controlled nanostructure has led to the creation of materials with surprising and useful
Recently, we have developed a ‘top-down’ technique based on sequential electroplating that allows the creation of highly-structured multilayer metallic materials, with precisely designed characteristic lengths in the hundreds of nanometers but volumes of manufactured material in the macro range. This electroplating-based approach also enables batch fabrication of nanostructures. The fabrication relies on automated and repeated multilayer electrodeposition of multiple metallic materials, followed by sacrificial etching of one metal. The remaining structure consists of individual high-lateral-aspect-ratio sub-micron metallic films. Example applications of the use of these nanostructures in energy storage and conversion applications, including batteries and magnetic-material-based DC-DC converters, will be discussed.

11:15-11:45

2A3 Keynote Speaker 8: Hongbo Sun (Watson Auditorium)
Chair: Hans Zappe & Yao-Joe Yang

(2A3-KS-8) NANO-MICRO-ENGINEERED POLYMERS FOR ADVANCED APPLICATIONS …………………………No.24
Hong-Bo Sun
State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, China

Compared with lithographic and self-assembling nanofabrication technologies, laser nanofabrication features the reasonably high spatial resolution till nanometers, the three-dimensional prototyping capability and eligibility applicable to various materials. In this talk, the recent research progress of the technology will be reported. Particular emphasis will be placed on the works conducted in our lab, such as its use for fabrication of advanced micro-optical, micro-electronic, micro-mechanical, microfluidic, sensing and biomimetic devices and systems.

11:45-13:00

Conference Lunch (Grand Ball Room)

13:00-15:00

Poster and Exhibition 2 (P2): Poster Number 2P1-2P103 EII

Details of 2P1-2P103 in page 79-98.

15:00-16:30

Session:2B1
Room F1
Topic Micro/nano Sensors, Actuators & Systems 1
Chair Kean Aw & Qiangbin Wang
Paper ID 407,447,455,481,489,503,515

(2B1-1) SILICON CARBIDE CAPACITIVE PRESSURE SENSORS WITH ARRAYED SENSING MEMBRANES … No.407
Bo Meng, Wei Tang, Xuhua Peng, Haixia Zhang
Institute of Microelectronics, Peking University, China
Silicon carbide absolute capacitive pressure sensors with arrayed sensing membranes was designed and fabricated based on silicon-glass anodic bonding. The sensing membranes consist of multiple layers of SiC/Au/SiC, making the device promising to be applied in corrosive environment. The fabricated sensor was integrated with a capacitor read-out circuit in a size of 22 × 23 × 9 mm³, and then packaged by PDMS, which serves as the coating layer of the electrodes. The packaged sensor remained nearly the same linear response after 60-minutes 30% KOH etching as the one before PDMS packaging, i.e. the sensor with a 5×5 array of 100×100 μm² square sensing membranes demonstrates a sensitivity of 0.021 pF/bar over a pressure range from 0.5 bar to 5 bar, and then modified to 0.023 pF/bar after KOH etching.

(2B1-2) CLOSE-LOOP SELF-COMPENSATION OF THE COUPLING ERROR FOR SILICON MICROMACHINED GYROSCOPE ……… No.447
Jiintin Su, Dingbang Xiao, Xuezhong Wu, Zhihua Chen, Zhanqiang Hou
College of Mechatronics Engineering and Automation, National University of Defense Technology, China
This paper presents the detailed analysis and preliminary design and experiment for close-loop self-compensation of the coupling error for silicon micromachined gyroscope. A closed-loop feedback control technology is adopted, which use electrostatic force to counteract the change of coupling stiffness. The electrostatic force is generated by the detection variation of coupling error. Comparing with the openloop detection, the experimental results indicated evidently that the proposed method can effectively decrease the value of the coupling error, increase its stability by 38 times, while the scale factor of the microgyroscope remains unchanged.
(2B1-3) AN OPTIMIZED GEOMETRY MODEL FOR THE MICROMACHINED LIQUID-SUSPENDED ROTOR GYROSCOPE ...No.455
Haifeng Zhang1, Nan Chen1, Xiaowei Liu2,3, Xiaoshu Zhang1, Hai Li1
1MEMS Center, Harbin Institute of Technology, Harbin, China
2Key Laboratory of Micro-systems and Micro-structures Manufacturing (Harbin Institute of Technology), China
The levitation of the rotor eliminates mechanical friction resulting in high sensitivity for micro-gyroscopes. Theoretically, however, the rotor stability is difficult to control due to the rotor's small size. Its performance can not rival vibratory gyroscopes at present. In this paper a novel micromachined liquid-suspended rotor micro-gyrooscope is proposed, whose stability is improved by liquid suspension. The magnetic field mode of micro-gyroscopes is established to analyze the distribution of magnetic field and calculate the driving torque of the rotor. The structure of driving stator is optimized. The flow field model is established to optimize the rotor radius. Using optimized geometry model, the maximum rotational speed of the rotor is 23920 rpm.

(2B1-4) PIEZORESISTIVE PROBES FOR (BIOMOLECULAR) FORCE SENSING ..No.481
Joan Bausells, Giordano Tosolini, Yigezu M. Bihane, Francese Perez-Murano
Barcelona Micronanoelectronics Institute, IMB-CNM (CSIC), 08193 Bellaterra, Spain
We have developed self-sensing piezoresistive microcantilevers optimized for the measurement of (biomolecular) forces. Typical dimensions are 250 μm in length, 8-20 μm in width and 450 nm in thickness, with spring constants of about 1 nN/m. The devices have been electromecanically tested on wafer and show good force resolutions in air between 35 and 130 pN depending on the cantilever dimensions. We have also tested the electromechanical behavior of the cantilevers in liquid environment and we show that both the force sensitivity and the noise characteristics of the devices are not noticeably degraded as compared with their response in air. This opens the way to the use of the cantilevers in single molecule force spectroscopy of biomolecules.

(2B1-5) ITO NANOWIRES FOR GAS SENSOR APPLICATIONS ...No.489
M. Ashra1, E. Preiß1, T. Sauerwald2, D. Feili1, H. Siedel1
1Lab of Microelectronics, Microfluidics, and Microactuators, Saarland University, Germany
2Lab for Measurement Technology, Saarland University, Germany
In this work we have realized ITO nanowires with typical dimensions of 700 nm width and 200 μm length. They were fabricated by using a novel approach of laser writing in a sputtered indium tin oxide (ITO) film by using a high-repetition rate near-infrared Ti:sapphire laser system based on an 85 MHz, sub-10 fs resonator. These nanowires were characterized electrically and tested as resistive gas sensors with self-heating capability. For this purpose they were exposed to NO2 concentrations in the ppm range within synthetic air, showing a clear increase of resistance. At ambient temperature the sensor exhibits an integrating behavior with relatively long relaxation times. It was shown that the relaxation times can be shortened by exploiting the self-heating capability of the sensor. The self-heating effect was studied by FIM simulations.

(2B1-6) MOS TUNNELING STRAIN SENSOR USING AN AC MEASUREMENT TECHNIQUE No.503
Li Zhu1, Ruchira Dharmasena2 and Shamus McNamara1
1Dept. of Electrical & Computer Engineering, University of Louisville, Louisville, KY, USA
2Dept. of Physics, University of Louisville, Louisville, KY, USA
The increasing requirement for low power sensors is motivating research on new techniques. MOS tunneling sensors consume only nW of power, compared to typical piezoresistive and capacitive sensors which consumes μW to mW. The strain was measured by measuring the tunneling current through a Metal-Oxide-Semiconductor sandwich from a DC voltage. To overcome the electronic noise, substantial averaging was utilized. In this paper an improved method of measuring the strain from the tunneling current is demonstrated in which an AC signal is utilized, and the AC current is measured. This approach substantially reduces the noise by avoiding the 1/f noise. The optimal conditions for the AC technique are to use a high frequency to avoid 1/f noise and a low DC bias.

(2B1-7) MODE LOCALIZATION IN COUPLED AlN/SCS CANTILEVERS FOR HIGHLY SENSITIVE RESONATING FLOW METER ...No.515
Kenji Kozuka1, Dong F. Wang2, Tsuyoshi Ikehara2, Keisuke Chatani1, and Ryutaro Maeda1
1Micro Engineering & Micro Systems Laboratory, Ibaraki University (Faculty of Eng.), Hitachi, Ibaraki, Japan
2Research Center for Ubiquitous MEMS and Micro Engineering (UMEMSE), AIST, Tsukuba, Ibaraki, Japan
The use of vibration mode localization in arrays of mechanically-coupled, nearly identical beam-shaped resonators has been studied for ultra-sensitive mass detection and analyte identification. Our recent work (NEMS 2012) focused on enhancing the amount of amplitude change due to vibration mode localization with a beam shaped 3-resonator array. The preliminary results were discussed from view point of vibration characteric by comparing experimental results with analytical ones, without a small mass perturbation. The present study however try to apply the consequent amplitude change to resonating-based flow meter with a simplified system of beam shaped 2-resonator array (AlN/SCS). The possible application has been analytically discussed from view point of vibration characteristic with a small mass perturbation.
Discrete nanoparticle (NP) ensembles have attracted increasing attention because of their distinct properties and potentials in fundamental researches and novel functionalities. For example, discrete gold and silver NP dimers display plasmon coupling and functioned as a molecular ruler. Small molecules, DNA, peptides, and polymers have been utilized to assemble one- and two-dimensional nanostructures. Recently, pyramid and tube conformational nanoarchitectures have been constructed by assembling unitary or binary NPs with DNA as scaffold, opening up the possibility of building three-dimensional (3D) NP ensembles. However, the methods suffer from low yields or poor stability or that the particle type and number in a single ensemble cannot be easily tuned. Here we show the controllable assembling of 3D discrete nanoarchitectures of quantum dots (QDs) and gold NPs (AuNPs) with mutated virus-based NPs (VNPs) as scaffolds by simultaneous use of their inside and outside space. QDs are first encapsulated into the icosahedral VNPs. Then AuNPs bond to the outside of the QD-containing VNPs (QD-VNPs) through interactions with rationally introduced semi-exposed cysteines on the VNP surface. By tuning the ratio of AuNPs to QD-VNPs, we have obtained a series of hybrid nanoarchitectures in high yields, in which there is one QD at the center surrounded by a tunable number of AuNPs. Surface plasmon resonance (SPR) coupling of AuNPs and fluorescence quenching of QDs by AuNP clusters were observed in these structures. The findings demonstrate that VNPs can be a robust platform to controllably organize nanomaterials. The diversity in structure and size and the feasibility in structural manipulation of VNPs make this strategy versatile for fabrication of various structures and devices.
(2C1-5) DYNAMIC SEPARATION OF B-LYMPHOMA CELLS FROM RED BLOOD CELLS USING OPTICALLY-INDUCED ELECTROKINETICS
1State Key Laboratory of BioRobotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China
2University of the Chinese Academy of Sciences, Beijing, China
3Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan
4Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong

Session: 2D1 Cross-Starit Invited Session 4 Room M3
Chair & Co-Chair: Linsen Chen & Lungjie Yang

15:00-16:30

(2D1-1) SYMMETRIC TOGGLE STRUCTURED MEMS LINEAR VARIABLE CAPACITOR WITH LARGE TUNING RATIO
Ling Li, Chenxu Zhao, Mengwei Li, Zewen Liu
Institute of Microelectronics, Tsinghua University, China
A microelectromechanical-system (MEMS) variable capacitor with symmetric toggle structure is proposed to achieve an excellent linearity of the capacitance tuning ratio. It consists of a pair of comb electrodes and a linear variable capacitor (LVC) with a tunable gap. The capacitance of the LVC can be modulated by the relative position of the comb electrodes. The proposed MEMS variable capacitor was modeled and simulated using ANSYS software and fabricated using the surface micromachining process. The results show a high linearity factor (LF) of 96.3% in the tuning range from 0 V to 30 V. The LF even reaches 98.9% from 10 V to 30 V.

(2D1-2) STEEL-BASED TAIL ACTUATORS FOR MICRO-AIR VEHICLES
Lung-Jieh Yang, Dung-Lin Jan, Wei-Chung Lin
Department of Mechanical & Electromechanical Engineering, Tamkang University, Taiwan
This work presents an animation of the sporangial motion for making bionic tail flaps of micro-air vehicles (MAVs) regarding energy saving. A SUS304 steel foil of 40 μm-thick is used as the substrate and Nd:YAG laser cutting is performed to construct the surface tension-driven actuator. Surface modification including parylene coating and oxygen plasma treatment are tried to enlarge the actuation stroke angle.
(2D1-3) SUB-20nm E-BEAM LITHOGRAPHY TECHNOLOGY ... No.88
Baoqin Chen, Qin Wang
Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, China
In sub-20nm structure graphical electron beam lithography, we adopt a method of the combination of high-resolution, high-contrast electron resists HSQ and Single-line Lithography-Implant Resist 3mm Grid structure lithography. Adopt lattice structure and thin resists preventing phenomenon of adhesion, review and collapse of high aspect-ratio pattern of nano-structure. Adopt spin-coating of the SX-AR-PC5000/90.1 conductive protective coating on surface of resists effectively inhibit influence on E-beam lithography from charge accumulation phenomenon of insulator substrates and dielectric film.

(2D1-4) ARRAYED METALLIC MICRO/NANO PARTICLES FOR LOCALIZED SURFACE PLASMON RESONANCE BASED ON METAL CONTACT TRANSFER LITHOGRAPHY ... No.90
C. Y. Wu, H. Y. Chung, and Y. C. Lee
Mechanical Engineering, National Cheng Kung University, Tainan, Taiwan
This paper demonstrates a rapidly, low cost, and mass production process to fabricate arrayed metallic nano-particles on a variety of substrates. A hexagonal arrayed metallic nanoparticles deployed on ITO/glass substrate with sub-micron periodicity is achieved. It is observed in optical transmittance measurements that noble metallic arrayed nano-particles deployed on ITO/glass substrate result in a spectrally narrowband of extinction in visible range, and is in good agreement with the simulated results using finite-element method (FEM). It is found that the narrowband extinction spectrum is associated with electromagnetic field coupling between the array of metallic nanostructures and the ITO layer. This electromagnetic field coupling induces significant plasmon resonance in the ITO layer. Based on this observed phenomenon, optoelectronic devices with arrayed metallic nanostructures can be easily designed and developed.

(2D1-5) FABRICATION OF GRAPHENE BASED ELECTROTHERMAL CANTILEVER ACTUATOR No.411
Yilong Zhou, Hengchang Bi, Xiao Xie, Liao Sun
SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing, China
A novel actuator has been fabricated using graphene and graphene oxide composite paper as building blocks. The two materials have nearly equal Young’s modules, however a large displacement was observed during the electromechanically driven operation, which was attributed to great difference in coefficient of thermal expansion of graphene paper and graphene oxide paper.

15:00-16:30
15:00-16:30 Session: 2E1 Flexible MEMS, Sensors & Printed Electronics 1 Room EIII
Chair & Co-Chair: Haixiong Ge & Tingrui Pan
(2E1-1-B-1) OVERVIEW OF FLEXIBLE AND PRINTABLE ELECTRONICS .. No.40
Zheng Cui
Printable Electronics Research Center, Suzhou Institute of NanoTech, Suzhou, China
Flexible and printable electronics represent a paradigm shift in electronics manufacturing, which deviates from mainstream silicon-based microelectronics. Everything has changed, from substrate materials to electronic materials and to the way electronic devices are fabricated, except the basic principle of electronics. This talk gives an overview on what are flexible and printable electronics, why flexible and printable, the principles behind it, the materials and fabrication issues within it, and market potential for this type of electronic products.

(2E1-2) PARYLENE E-BASED FOLD-AND-BOND WIRELESS PRESSURE SENSOR .. No.502
Brian Cru m, Wen Li
Department of Electrical and Computer Engineering, Michigan State University, USA
This paper describes the design, fabrication, and characterization of a wireless, flexible, passive pressure sensor that is suitable for long-term intraocular pressure monitoring. The integrated planar MEMS coil and the variable capacitor were constructed using a fold-and-bond technology, which avoids planarization of the MEMS coil and variable capacitor.

(2E1-3) WEARABLE SKIN SENSOR USING PROGRAMMABLE INTERLOCKING OF NANOFIBERS No.131
Kahp-Yang Suh1,2, Noo Li Jeon1,2, Changhyun Pang2
1World Class University Program on Multiscale Mechanical Design, 2School of Mechanical and Aerospace Engineering, Seoul National University, KOREA
We presents a highly sensitive, flexible, multiplex strain gauge sensor by utilizing single active layer of nanoscale mechanical interlocking between high aspect-ratio P-coated polymeric nanofibers. The sandwich-assembled, interconnected nanofibers supported on thin polydimethylsiloxane (PDMS) layers displayed a specific strain gauge (GF) factors for multiple sensing such as pressure, shear force, and torsion, measured from the change of electrical resistance as a function of applied compressive strain (≤ 5%). The assembled device was used to monitor continuous kinetic motion of a bouncing micro-droplet on a superhydrophobic surface and physical force of a heartbeat under different conditions. In order to enhance adaptability on exquisite human-skin, skin adhesive patches for in vitro diagnostic device are developed.
In this paper, we present the tunable wetting behavior of Poly(dimethylsiloxane) (PDMS) by nanostructuring and plasma treatments, which shows stable superhydrophobicity and superhydrophilicity. The PDMS film with high-density nanoporous was prepared by replica molding of the black silicon surface fabricated by an improved deep reactive ion etching (DRIE) process. This simple nanostructure can increase the roughness and reduce the surface energy of PDMS. The conventional equipment for micro fabrication (i.e. inductively couple plasma etcher) was used to realize plasma treatment to modify the wettability. The effects of different plasma gases on wettability are attributed to physical and chemical mechanisms, which have been investigated by scanning electron microscope (SEM) and energy dispersive X-ray spectroscopy (EDX), respectively. The optimized recipe was obtained after additional chemical analysis. Eventually, the static contact angles of this PDMS membrane remarkably achieved ~160° and ~3°, respectively. Furthermore, the recovery of wettability was reduced by nanostructuring PDMS surface.

Xiao-Sheng Zhang1, Shi-Gan Chu1, Nicolas Peter2, Hai-Xia Zhang1
1Institute of Microelectronics, Peking University, China
2Saarland University, Saarbrücken, Germany

In this work, we investigate the development of a nanoscale sensor with physically engineered gates offers the possibility of effectiv...
linearity for the concentrations of H2, ranging from 0 to 4% in volume. Good consistency and high accuracy of the micro machined catalytic combustion gas sensor were achieved.

(2B2.3) ULTRASENSITIVE MASS DETECTION USING DUAL-MICROCANTILEVERS COUPLED BY CRUCIFORM OVERHANG ……………………………………………………………………………………………No.198
R. Zhang, G.B. Cai, Z.Q. Wang, L.R. Zhao and W.G. Wu
National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Institute of Microelectronics, Peking University, Beijing 100871, China
We report the use of dual-microcantilevers coupled by cruciform overhang to enhance the mass sensitivity for minor mass detection. Driven by a piezoresistor in air, each cantilever of the structure can resonate in two different modes (in-phase and out-of-phase modes), and the resonant amplitude-ratios are compared before and after a mass adding. Using this sensing strategy, the cross-shaped overhang of the coupled system, by weakening the coupling effect between 2 cantilevers, provides 2 orders of magnitude enhancement in sensitivity without scaling down the cantilevers.

(2B2.4) FABRICATION AND CHARACTERIZATION OF SURFACE-MODIFIED DRY ELECTRODE FOR MONITORING BIOPOTENTIAL ……………………………………………………………………………………………No.256
Yuanfang Chen, Weihsu Pei, Sanyuan Chen, Shanshan Zhao, Huan Wang, Qiang Gui, Hongda Chen
State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, China
The low and stable contact impedance between the dry electrode and skin interfaces is crucial for the acquisition of high quality biopotential signal, especially for long-term recording. Building upon this fact, poly(3,4-ethylenedioxythiophene) (PEDOT), was introduced onto the surface of dry electrode to increase the active contact area and reduce contact impedance. Silicon-based dry electrode (6 mm×6 mm) with pyramid-like micro-needles was fabricated by a low cost method: dipping plus etching. The electrode-to-skin contact impedance (ESCI) measured on subjects proved that dry electrodes with PEDOT surface-modification have better electrical properties than that without PEDOT surface-modification. Besides, PEDOT modification combined with the microfabrication process can provide a rapid, cost-effective and high-yield method to manufacture dry electrode.

(2B2.5) A MICROACTUATOR FOR MAGNETIC FIELD CONTROL DEVICE WITH LARGE SHIFTING RANGE ………No.275
Kun Liu1, 2, Yitong Cao1, Huaiqiang Yu1, and Zhuhong Li1
1National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Peking University, Beijing, China
2School of Computer and Information Engineering, Peking University Shenzhen Graduate School, Shenzhen, China
A large tilting angle and zero static power consumption microactuator has been designed and fabricated in order to meet the requirement of low power consumption and remote control system. Analytical model and fabrication process flow of rotation actuator have been demonstrated, and static performance has been tested and compared to theoretical data. The results show the performance of our electrostatic driven device in good agreement with theoretical predicted model.

(2B2.6) LOW FREQUENCY ARC-BASED MEMS STRUCTURES FOR VIBRATION ENERGY HARVESTING … No.305
Daniel J. Apo1, Mohan Sanghadasa2, and Shashank Priya1
1Center for Energy Harvesting Materials and Systems (CEHMS), Virginia Tech, Blacksburg VA, USA
2Aviation and Missile Research, Development, and Engineering Center, US Army RDECOM, Redstone Arsenal, AL, USA
This study reports the novel arc-based cantilevers for reducing the natural frequency of MEMS cantilever beams without the addition of tip/point mass. The results show an increased potential for energy extraction from naturally occurring vibration sources. An analytical model was used to model the effective mechanical properties of multilayered MEMS cantilevers while the natural frequencies were obtained by applying a finite element code. Results were obtained for two geometries of arc-based cantilevers as well as their linear counterparts. These results demonstrate that arc-based cantilevers vibrate at frequencies significantly lower than their linear counterparts (up to 40% reduction in natural frequency).

16:30-18:00
Session: 2C2 Micro/Nano Heat Transfer & Energy Harvesters Room M2
Chair&Co-Chair: Lishuang Feng & Chenyang Xue
(2C2.1) FLEXIBLE MEMS INDUCTORS BASED ON PARYLENE-FENi COMPOUND SUBSTRATE FOR WIRELESS POWER TRANSMISSION ……………………………………………………………………………………………No.443
Yang Zheng1, Xuanming Sun1, Zhongliang Li1, Xihan Li1, Haixia Zhang1
1National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Peking University, Beijing, China
2School of Electronics and Information Engineering, Beijing Jiaotong University, Beijing, China
In this paper, flexible MEMS inductors based on Polyene-FeNi Compound Substrate (PFCS) were designed, fabricated and analyzed. We choose parylene as substrate to achieve flexibility and good bio-compatibility. Then, a NiFe2O4 magnetic film was deposited on the parylene film to form a compound substrate. Moreover, the NiFe2O4 core was also deposited in the center of the spiral inductor to improve its performance. As the radius of magnetic core increased from 800μm to 1200μm, the maximum quality factor and the inductance increased by 288% (from 4.10 to 15.91) and 297% (from 265.94μH to 1.06μH), respectively. If we replaced the magnetic core with magnetic array, the maximum quality factor and the inductance could improve by 111.45% (from 6.29 to 13.30) and 102.78% (from 470.97nH to 955.05nH). Finally, the PFCS inductors were tested in experimental system.

(2C2.2) GOLD NANOPARTICLES DOPED FLEXIBLE PVDF-TRFE ENERGY HARVESTER ………No.325
Dajing Chen1, Tushar Sharma1, Yuquian Chen1, Xin Fu1, John X.J. Zhang2
1National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Institute of Microelectronics, Peking University, Beijing 100871, China
2Chair: Lishuang
We have successfully developed flexible thin-film energy harvesters based on gold nanoparticles doped PVDF-TrFE (polyvinylidenefluoride-trifluoroethylene) copolymer. The thin film characteristics can be well controlled by the manufacturing process involving the spin-coating and electrochemical deposition. We demonstrate that nanostructures in thin film piezoelectric materials increase the effective area for charge collection, leading to enhanced power density and reversibility. Such flexible substrate with doped nanoparticles presents a new class of platform for high efficiency, low-cost energy and sensing applications.

(22C-3) HIGH-Q POLYIMIDE-BASED SPIRAL INDUCTORS WITH MAGNETIC CORE FOR RF TELEMETRY APPLICATIONS ……No.330

Xurong Sun1, Yang Zheng2, Zhongliang Li2, Xiahan Li2, Haxia Zhang1
1National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Peking University, Beijing 100871, China
2School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044, China

This paper presents a new high quality factor (Q) and large inductance (L) stacked polyimide-based spiral inductor. Polyimide (PI) is used as the substrate and the insulation layer to provide good biocompatibility. To achieve multilayers, self-planarization of PI on the surface with 10μm steps was realized. Meanwhile, Na2Fe2O4 was successfully electroploated to enhance the performance of inductors. The double-layer inductor shows a maximum Q of 12.7 and a large L of 7.07μH at 5.54MHz. Considering the area of the coil, the inductance density is as high as 62nH/mm2. Based on this inductor, the wireless power transmission (WPT) system was realized. The minimum attenuation is -9.4dB at 1.8MHz. With the full IC-compatible fabrication process, this coil could be used in many implantable devices.

(22C-4) NOVEL 3D NANOHarvester BASED ON NANO-ZnO RODS FABRICATED BY ELECTROSPRAY IONIZATION METHOD ………………………………………………………………………No.339

Z.H. Liu, C.T. Pan, W.C. Wang, C.C. Li
National Sun Yat-Sen University, and Center for Nanoscience & Nanotechnology, National Science Council Core Facilities Laboratory for Nano-Science and Nano-Technology in Kaohsiung-Pingtung area, Kaohsiung, Taiwan

This study presents electrospray process (Fig. 1) with liquid solution epitaxial method to fabricate piezoelectric ZnO nanorods on vertically aligned ZnO nanorod arrays, which were packaged beneath the Pt (platinum) coating nanorod arrays, and forming Pt-ZnO Schottky rectifying interface. The sol-gel particles were uniformly electrosprayed on Au (aurum)/Si (silicon) substrate, and then formed the pure hexagonal wurtzite crystal structure as ZnO seed layer after annealing treatment at 900°C for 1 hour (Fig. 2). Well-aligned ZnO nanorod arrays (Diameter: 100-400 nm, Height: 761-1200 nm) of high (002) c-axis preferred orientation with an excellent piezoelectricity were grown at 90°C for 10 hours using liquid solution epitaxial method (Fig. 3 and 4). Fig. 4(d) shows the EDX spectrum of ZnO nanorods. ZnO nanoharvester was waterproofed using polymer film (Fig. 5), and driving by ultrasonic waves. A continuous DC voltage output (~15mV) is shown in Fig. 6.

(22C-5) LOW-FREQUENCY VIBRATION-BASED ENERGY HARVESTER USING A PIEZOELECTRIC COMPOSITE BEAM ……………………………………………………………………………….No.421

Lokesh Dhakar1,2, Huicong Liu2, F. E. H. Tay1,3 and Chengkuo Lee2
1NUS Graduate School for Integrative Sciences and Engineering, Singapore
2Department of Electrical and Computer Engineering, National University of Singapore, Singapore
3Department of Mechanical Engineering, National University of Singapore, Singapore

A composite beam based piezoelectric energy harvester (EH) is designed and characterized which can be used to harvest energy with low frequency vibrations. This kind of EH is demonstrated to be 3.12 times and 1.32 times (at 0.1g) more efficient at output power generation than a standalone bimorph and piezoelectric bimorph with a proof mass at the free end, respectively. The resonant frequency of the EH is reduced from 275 Hz (for standalone bimorph) to 36 Hz by using the soft spring. With the aid of spring hardening effect using a stopper, the output power density is increased up to 129.15 μW while the acceleration was increased up to 6 ms-2 at an operating frequency of 12.5 Hz. The output of both generating beams with series connection doubled the overall output of the device.

(22C-6) IMPACT BASED FREQUENCY INCREASED PIEZOELECTRIC VIBRATION ENERGY HARVESTER FOR HUMAN MOTION RELATED ENVIRONMENTS ………………………………………………………………………………No.424

Mah A. Halim, Sungwon Khym, Jae Y. Park
Micro/Nano Devices and Packaging Lab, Department of Electronic Engineering, Kwangwoon University, Seoul, 139-701, Korea

This paper presents a frequency increased piezoelectric vibration energy harvesting device where the low frequency periodic impact of a driving beam with a horizontally extended rectangular tip makes two piezoelectric generating beams to vibrate at the same time, with their higher resonant frequencies, producing higher output power. The dimension of the flexible driving beam was 58×4.8×1 mm and that of each piezoelectric generating beam with styrene support was 15×3.5×0.8 mm3. Each generating beam of the proposed energy harvester produced a maximum peak output power of 46.51 μW across an optimum resistive load of 200 kΩ under 4 ms-2 acceleration and was increased up to 129.15 μW while the acceleration was increased up to 6 ms-2 at an operating frequency of 12.5 Hz. The output of both generating beams with series connection doubled the overall output of the device.
What's more, the fabrication of micro-nano-liposomal bubbles with a new method by a Gas-liquid mixing device is under studying.

Micro/Nano Bubbles for Medical Theranostics

MICROSCOPY AND TRANS

63
while without myosin-II, we induce an orientation of 90°.

In this paper, we report an electric-field-driven nanoscale electromagnetic actuating. The device consists of a lithography-patterned Ni-nanobars on top of a piezoelectric Lead-Zirconate-Titanate (PZT) thin film deposited on a silicon wafer. When an electric field is applied to the PZT film, in-plane strains in the film are developed through the piezoelectric actuation. Due to the mechanical coupling between the PZT-film and Ni-nanobars, the strains are transmitted to the Ni-nanobars through the magnetostatic interaction, the strain transformation through the magnetostatic single-domain of each Ni-nanobar. This achieves an electric-field-driven magnetic-domain transformation (magnetization rotation) in the Ni-nanobar. That is, nanoscale electromagnetic actuating.

Using Cellular Architecture to Prepare Nanomaterials and Nanostructures

Chao-Min Cheng
Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu 300, Taiwan

Humankind often derives guidance and inspiration from the nature, which exhibits diverse structures that enable organisms to accomplish complex functions using highly integrated and optimized solutions. However, most designers originate without any explicit reference to nature, as direct natural analogs do not exist for many associated technological applications. In recent years, there has been increasing interest in borrowing design concepts or inherent materials from nature to create the functional materials, structures, and systems at the small scale. I will i) outline, and ii) provide my own analogs to demonstrate systematic red shift towards the increase of tensile strain, and blue shift as well as excitonic peak splitting towards the increase of compressive strain. Strain-gradient is found to dominate the overall red shift of the emission energy at a pure bending configuration.

Micro/nanofluidics & Bio Chips 1

Session: 2E2

Chair & Co-Chair: Tza-Huei Wang & Yanyi Huang

DECRYPTING THE DYNAMIC LIFE OF SINGLE CELLS THROUGH MICROFLUIDIC-ASSISTED MICROSCOPY AND TRANSCRIPTOME ANALYSIS

No.50
Yanyi Huang
College of Engineering, and Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing, China

Microfluidic platforms enable quantitative analysis of biological systems which can not otherwise be executed in a traditional bench top setting [1]. Progress in quantitative image analysis has also evolved microscopy into a powerful tool for systems biology studies as automated image collection and analysis techniques are able to quantitatively process three-dimensional image data with more and more detail. Here we present a microfluidic platform for label-free cellular imaging and sorting with stimulated Raman scattering (SRS) microscopy. SRS microscopy is a quantitative technique which achieves label-free imaging with chemical specificity and low background by exploiting vibrational resonances in chemical bonds [2]. Microfluidic technology enables precise and dynamic handling of nanoliter volumes of liquid and provides an ideal platform for single-cell processing. A SRS microscope is integrated with a microfluidic device which can manipulate, trap and sort single cells. After sorting, single cells are prepared for gene expression analysis. This system is used to characterize lipid metabolism by quantifying intercellular lipid droplet morphology and gene expression and demonstrates the potential for a systems approach to studying lipid droplet biology.

(E2-2) DYNAMIC BEHAVIORS OF MICRODROPLETS IN CONVERGENT MICROCHANNELS UNDER THE EFFECT OF DIELECTROPHORESIS ... No.110
Y. Yan, D. Guo, S. Z. Wen
State Key lab of Tribology, Tsinghua University, Beijing, China

The convergent microchannel is widely applied to connect microchannels with different sizes to avoid sharp changes of the flow field. It is important to investigate the dynamic properties in the convergent microchannel to promote the development of microdevices. Numerical simulation method is used to study the dynamic behaviors of microdroplets in a convergent microchannel. The microchannel is embedded with electrodes and alternating current (AC) is applied on the electrodes. Under the effect of nonuniform electric field, dielectrophoresis force is defined as the driving force to manipulate the microdroplets in the convergent microchannel. In this study, the surface tension is considered in the Navier-Stokes equations. The influence of dielectric constant and magnitude of voltage on the dynamic behaviors of microdroplets are analyzed in details. According to the results, the velocity of the microdroplet is proportional to the dielectric constant and voltage in the convergent microchannel. This can provide an efficient method to control the droplet merging process during the biological or chemical experiments.

(E2-3) A NEW MICROPUMP USING AMPLIFIED DEFORMATION OF RESILIENT MEMBRANES No.147
Chung-Hsien Liu and Gwo-Bin Lee
Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan

This study presents a new, pneumatically-driven micropump made of PDMS (polydimethylsiloxane) membranes for liquid delivery. Liquid samples can be transported by using a new mechanism generated by three oil-hydraulic chambers, which were first filled with liquid (mineral oil) and then deformed by compressed air such that an amplified deformation of the PDMS membranes can be generated for liquid transportation. Experimental results showed that the new mechanism could be used to amplify the deformation of membranes and generate considerable pumping rates. It could be promising for automation of microfluidic devices and systems.

(E2-4) MONITORING THE DISEASE ACTIVITY VIA THE ANTIBODY-ANTIGEN RECOGNITION IN PAPER

Hsi-Kai Wang1,2, Cheng-Han Tsai1,2, Chung-Tao Tang3,4, Pi-Chun Li2, Jin-Shyang Leou2, Yin-Liang Tang2,4, Hsyue-Jen Hsieh3, Han-Chung Wu2, Chao-Min Cheng1,2
1Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu 300, Taiwan
2Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 128, Taiwan
3Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan
4Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan

Dengue fever is one of the acute flavivirus-borne infectious diseases caused by dengue virus with four serotypes. To date, there are no efficient diagnostic tools available for monitoring the disease activity of dengue fever. It is needed to develop a diagnostic device with the characteristics of inexpensiveness, ease-to-use and robustness for the detection of dengue fever. In this study, we have developed an ELISA-based diagnostic device prepared via wax printing method through using filter paper. The antigens that we targeted to quantify in the buffer system were both non-structural protein 1 with the detection limit of about 100 pg/mL and envelope protein with the diluted virus culture soup of about 100 times of serotype 2 dengue virus (on in-vitro sample). We believe that this study would provide insight on the development of in-vivo diagnostic devices for dengue fever and various diseases in the different divisions of medicine.

(E2-5) IN-PARALLEL RARE CELLS IDENTIFICATION BY HIGH THROUGHPUT CELLS SELF-ASSEMBLY

Jui-Chia Chang, Tsung-Ju Chen, Yu-Cheng Chang, and Fan-Gang Tseng
National Tsing Hua University, Taiwan

In this study, we present a high density cells self-assembly chip to form a dense monolayer cell array by the employment of gravity force and fluidic force. The cancer cells can be identified in mega primary lymphocytes at the single cell level by immunofluorescence. This chip is compatible with standard fluorescence microscopy equipment and possible to do cell culture after cell array formed.

(E2-6) A COMPACT DISK (CD) MICROFLUIDIC PLATFORM FOR RAPID SEPARATION AND MIXING OF BLOOD PLASMA

No.252
appropriate optical patterns, ODEP has been developed as an enabling technique particularly in the manipulation, separation, collection, alignment, transportation, and characterization of cells/particles. In this talk, I will present several examples using ODEP on microfluidic systems for biomedical and nanotechnology applications, including micro flow cytometer, micro separator, cell lysis, cell rotation, DNA stretching and CNT alignment.

10:45-11:45 3A3 Keynote Speaker 11: Xinxin Li (Watson Auditorium)
Chair: Fanggang Tseng & Lining Sun
(3A3-KS-11) EFFORTS ON THE TWO INTERFACES OF RESONANT-CANTILEVER FOR ULTRA-SENSITIVE BIO/CHEMICAL SENSING

Xinxin Li
State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, CAS, Shanghai, China
Different from MEMS physical sensors like pressure sensor and accelerometers, which have been well commercialized and widely applied, bio/chemical micro/nano sensors are still under technical development. Bio/chemical sensors enclose two interfaces for molecule recognition and signal transduction, respectively. In order to distinguish the two interfaces for improved specific selectivity and signal sensitivity. We will focus on the point and give lots of our research examples that employ micro/nano combined resonant cantilevers as biochemical sensing platform for on-the-spot trace-level detection.

11:45-12:45 3B1 Conference Lunch (Grand Ball Room)
12:45-13:45 3B1 Session: 3B1 Nanomedicine
Chair: Litao Sun & Wen Li
Room F1
Paper ID 548(IS-3),370,190,319

13:00-14:00 3B1 Nanomedicine
Chair &Co-Chair: Litao Sun & Wen Li
Room F1
(3B1-1-S-3) INTEGRATING APTAMERS AND MICROFLUIDICS FOR BIOLOGICAL MANIPULATION AND SENSING

Qiaolin Jiang, Juho Kim, Jing Zhu, J. Yang, John Hilton, Thanh Vu Nguyen, Renjun Pei, Kyung-Ae Yang, Milan Stojarovic
We present an overview of our efforts to integrate aptamers and microfluidic devices, including manipulation of biomolecules and cells using aptamers, and isolation of target-binding nucleic acids. The aptamer-based devices for target manipulation are capable of specific analyte extraction and enrichment as well as isocratic elution, and can be coupled to biodetection systems for highly sensitive analyte detection. The microfluidic devices for isolation of target-binding nucleic acids demonstrate the potential for integrated selection of aptamers having predefined binding characteristics against a broad spectrum of practically important biological analytes.

13:45-14:45 3A3 Keynote Speaker 12: Jianxin Wu (Watson Auditorium)
Chair: Fanggang Tseng & Lining Sun
(3A3-KS-12) SUZHOU INDUSTRY PARK OVERVIEW AND NANOPOLIS SUZHOU

Jianxin Wu
Suzhou Nanotech Co., Ltd, China
Suzhou Industrial Park (SIP), which is the largest cooperation project between China and Singapore, has developed to be a new city. The project started from 1994 and now SIP is the home to over 20,000 national and multinational companies, with a strong industry base in IC, TFT-LCD, high-end equipment, telecommunication, bio-pharmaceutical, etc. and probably the highest density of venture capitals in the world, with more than 100 VCs and PE funds. For the further development and upgrade of the current industry, SIP will focus on the nanotech and reform itself as Suzhou Innovation Park (SIP). Nanotech industry areas of focus include Nano-Material, Micro/Nano-Manufacturing, Energy & Green Tech and Nano-biotech. Suzhou’s focus on nanotech innovation & commercialization follows naturally from its strengths in industry, business and commercialization partners. By the end of 2012, SIP has attracted over 5500 nanotech related experts, entrepreneurs and engineers among 100+ nanotech companies and 20+ institutes and universities. Now SIP is well on its way to being the most global and innovative nanotech hub in China, and intends to attract over 200 nanotech companies from all over the world and 10,000 nanotech experts within the next 3 years. SIP is actively building up whole ecosystems and value chains, so you can easily and rapidly take your nanotechnology or idea from R&D to prototyping, to commercialization. Ecosystem elements, including the Nanotech Startups, traditional companies, research institutes and universities, Venture Capitals, are strongly encouraged and supported to cooperate together to speed up the nanotech innovation, commercialization and application, under the government support and cluster cultivation.
THE NEW ANTICANCER AGENT PTX-MNPs INDUCED CELL CYCLE ARREST AND APOPTOSIS IN MULTIPLE MYELOMA CELLS IN VITRO

Cuijing Yang¹,², Fei Xiong¹, Yu Zhang³, Ning Qi, Jun Dou¹
¹Department of Pathogenic Biology and Immunology, Medical School, Southeast University, Nanjing, China
²Department of Pathogenic Biology and Immunology, Traditional Chinese Medicine of Jiangxi University, Nanchang, China

Although new therapies have increased the survival of multiple myeloma (MM) patients, the disease remains incurable. Recurrence of MM after therapy suggests that it has been postulated that CD138+ CD34+ cells called cancer stem cells (CSCs) that would be responsible for tumor initiation and relapse. An effective drug targeted CD138+ CD34+ MM CSCs need to be developed. This study aimed to investigate an inhibitory effect of anticancer agent paclitaxel Fe3O4 magnetic nanoparticles (PTX-MNPs) on CD138+ CD34+ MM CSCs. CD138+ CD34+ cells were isolated from NCH4-L2 MM cell line by immune magnetic bead sorting method and then exposed with the MNPs (0.1μg/ml), PTX (0.6μg/ml) and PTX-MNPs (0.08μg/ml) for 24 hours. The cell viability, apoptosis and caspases expression were respectively evaluated. The isolated CD138+ CD34+ cells possess the characteristic of CSCs. PTX-MNPs significantly inhibited CSC proliferation and increased expressions of caspases and resulted in CSC apoptosis. These data demonstrate PTX-MNPs as a promising anticancer agent that may contribute to future targeting therapy of MM CSCs for clinical trials.

BEND WAVEGUIDE WITH BROAD BANDWIDTH AND HIGH TRANSMISSION EFFICIENCY BASED ON AIR-HOLE PHOTONIC CRYSTAL

Xiaoyuan Ren¹,², Lishuang Feng, Zhili Lin
¹Laboratory on Inertial Science and Technology, Beihang University, Beijing, 100191, China
²Laboratory of Micro-nano Measurement-Manipulation and Physics, Beihang University, Beijing, 100191, China

Optical -induced dielectrophoresis (ODEP) technique has been demonstrated to manipulate microparticles by illuminating optical patterns on a photoconductive material. The ODEP chip was formed with indium-tin-oxide (ITO) and (M WCNTs) and single-walled carbon nanotubes (SWCMTs). Photonic crystal (PC) with triangular lattice of air-holes. By optimizing the bend structures, not only the transmission bandwidth of the whole waveguide is greatly improved, but also the transmission efficiency is enhanced. The transmission efficiencies of the wavelengths between 1540nm and 1580nm can reach more than 80%. The highest transmission efficiency 95% can be obtained for the wavelength of 1553nm. By simulating the transmission of the optimized bend waveguide, the light wave whose wavelength is 1553nm can propagate effectively.

OBSERVATION OF STRONG TRANSVERSE MAGNETO-OPTICAL KERR EFFECT ON SURFACE PLASMONIC GRATINGS

N. P. Ling¹, K. H. Chou¹, C. T. Jou¹, M. H. Lai¹, T. C. Chen¹, C. H. Lai¹, L. W. Wang¹, G. B. Lee¹ and M. C. M. Lee¹
¹Institute of Photonics Technologies, National Tsing Hua University, Hsinchu, Taiwan
²Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan
³Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan

Strong transverse magnetooptical Kerr effect on Au/Fe/Au surface plasmon (SP) gratings is demonstrated. Via the optimal design of this structure, the measured Kerr parameter is 0.03, which is 3 times larger than the maximal value ever reported on a plane magneto-optical SP substrate. Moreover, the Kerr parameter is very dispersive near the SP wavelength, which can be used for a high sensitive biosensor.
as focused ion beam (FIB) milling. The handled nanowires are used to assemble a NEMS device, namely an electrostatic switch design and a resonator, where the nanowire acts as switching contact and resonant component, respectively. Feasibility, working principle, reproducibility and specific values of the switches are investigated, as well as the conductivity of the nanowires itself.

(3C1-3) UNDERCUT EDGES FOR ROBUST CAPILLARY SELF-ALIGNMENT IN HYBRID MICROASSEMBLYNo.474
Ville Liamatainen, Velisko Sariola and Quan Zhou
Department of Automation and Systems Technology, School of Electrical Engineering, Aalto University, Finland
In this paper, we report capillary self-alignment of 200 μm × 200 μm square parts on matching patterns with undercut edges. The undercut edge structure is a purely topographical feature that provides ultimate pinning for liquids of any surface tension without chemical treatment. We show contact angles close to 180° for low surface tension liquids, and capillary self-alignment using thermally curable adhesive. Sub-micron alignment accuracy after adhesive curing is verified in a scanning electron microscope (SEM).

(3C1-4) MULTI-SPECTRAL CONFOCAL IMAGING PROBE ...No.507
Pongsak Sarapukdee1, Santi Rattanavarin1, Nunfon Khenthongchareon2, Ungkam Janjaree1, Romnuald Jolivet1, II Woong Jung1, Daniel López1, Michael J. Mandella2, and Wibool Pinyawattanametha1,2
1Advanced Imaging Research Center, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
2National Electronics and Computer Center, Pathumtani, Thailand

3C1

1Department for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois, USA
2James H. Clark Center for Biomedical Engineering & Sciences, Stanford, California, United States

We developed a novel MEMS based handheld multi-spectral confocal microscope providing the maximum tissue imaging depth of 400 μm, 6 μm transverse resolution, and the maximum speed of image collection up to 10 Hz with 200×200 image pixel size. Biological imaging performance was demonstrated on mouse ears and tissues of human cervix. 3D rendered images from our system is able to reveal the mouse ear blood vessels and nuclei of epithelial cells in cervical tissue samples.

(3C1-5) MICRO PROCESS ENGINEERING OF FREESTANDING SILICON FLUIDIC CHANNELS WITH INTEGRATED PLATINUM THERMISTORS FOR OBTAINING HEAT TRANSFER CORRELATIONSNo.401
R. Roth, K. Cobry, G. Lenk, P. Woias
Laboratory for the Design of Microsystems, IMTEK, University of Freiburg, Germany
The heat transfer in silicon microchannels with integrated in-line and staggered pin fin arrays is evaluated at clearance-to-diameter ratios of 0.5 - 0.77 in the laminar flow regime. The channels have a small width, leading to a significant influence of the channel walls on fluid flow and heat transfer. Their influence is considered when measuring the temperature distribution along the channel length and the average heat transfer. For this purpose platinum thermistors are integrated directly into the channel structures, which are released from the silicon substrate and made freestanding via deep reactive ion etching (DRIE) and selective dicing. The measurements show that a significant portion of the fluid flows below the pin fins in the clearance bypass region. Heat transfer correlations are developed with a new functional form that considers the strong influence of the clearance-to-diameter ratio on overall heat transfer.

13:00-14:30
Session: 3D1
Cross-Starit Invited Session 6
Room M3

(3D1-1) SOME RECENT PROGRESS IN NANO-MEASUREMENT AND STANDARDIZATIONNo.176
Wenhao Huang, Yuhang Chen, Tingting Luo, Xiaoning Liu
Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Heifei, China
Nano-measurement is one of the important fields of nanotechnology, while scanning probe microscopy (SPM) is among the most popular tools for quantitative surface characterization. In this talk, some recent progress in nano-measurement and standardization, mainly the characterizations of the drift rate and the complex three-dimensional (3D) surface roughness, will be introduced. To improve time stability of SPM instruments, practical methods are proposed and compared to measure the drift rates in x, y- and z- directions, and an international standard (ISO 11039: 2012) has been already developed. In quantitative evaluation of surface roughness by SPM, conventional reference standards, which usually have regular structures, may not thoroughly meet the requirements in calibrating the complex surface roughness measurements. As a result, we propose the adoption of 3D reference specimens with controllable surface parameters as a supplement of the conventional standards. The design, fabrication and characterization of the micro-nano-scale 3D roughness specimens will be presented. In addition, possible applications of the roughness specimens will be discussed. All these investigations can enhance the value of SPM in quantitative surface nanometry.

(3D1-2) IMMUNOASSAY USING AN IMPEDANCE SENSORS WITH PANDB-MODIFIED NANOPROBESNo.245
Cheng-Hsin Chiang1, Hsin-Pei Wu1, Yao-Wei Huang3, Cheng-He Chen1, Chuan-Pei Jien
1Department of Mechanical Engineering, Southern Taiwan University of Science and Technology, Tainan, Taiwan
2Department of Chemical and Materials Engineering, Southern Taiwan University of Science and Technology, Tainan, Taiwan
3Department of Mechanical Engineering and Advanced Institute of Manufacturing for High-Tech Innovations, National Chung Cheng University, Chia Yi, Taiwan

In this study, an impedance sensor with interdigital (IDT) electrode array was utilized for dielectrophoretic (DEP) immobilization of nanoprobes and impedance sensing of immunoactivity. In order to enhance the sensitivity of impedance sensing, Al2O3 nanoparticles (NPs) were modified with the conductive polymer (PANDB) for binding with antibody on the outer surface as the nanoprobes (antibody-PANDB-Al2O3 NPs). These nanoprobes were
there are some issues to be addressed to achieve highly hierarchical tissue-like structures. The engineered geometry to the hydrogel would effectively enhance the alignment of cells and the differentiation of stem cells. However, Junbo Wang

In this paper, a novel microfluidic pump is demonstrated. The micropump is inspired by water transportation in plants. It mimics the stomatal transpiration and negative pressure generated by a leaf to drive the water. It is mainly composed of a 250μm-thick SU-8 film with an array of micro pores, agarose gel, and a flow rate control unit. The micro pores in the SU-8 film mimic the stomata on a leaf. The agarose gel is used to mimic the stomata and the mesophyll cells, respectively. They consist of an “artificial leaf” which uses stomatal transpiration and negative pressure to drive water. The flow rate control unit can change flow rate by adjusting the number of the micropores participating in transpiration. Results have shown that the flow rate can be adjusted within 0.3nl/min-2.14nl/min, and the standard deviation of flow rate can be controlled within ±5%.

This paper presents a microfluidic system enabling continuous characterization of single-cell specific membrane capacitance and cytoplasm conductivity. Firstly condensed and immobilized on the IDT electrode surface by positive DEP force, then, a fluorescent protein (AF488-BSA) suspension sequentially filled into flow chamber for immunosensing by impedance measurement. In addition, the experimental results of PANDR-based nanoprobes were compared with conventional nanoprobes modified by silane-based modification. As the experimental results, the normalized impedance increases with the concentration of BSA in the range from 1 μM to 1 nM and the sensitivity of the PANDR-based nanoprobes is higher than the silane-based nanoprobes. Consequently, we have demonstrated a rapid and high-sensitive immunosensing based on impedance sensing with DEP force.

In tissue engineering studies, it is essential to provide a biomimicking environment for in vitro cultivation of cells and further functional organ units (e.g., liver lobules, nephrons, pancreatic islets, and osteons). Biological tissues/organs consist of hierarchical organization of various extracellular matrix (ECM) molecules along with spatial arrangement of cells and soluble factors. Recently, researchers culture cells in a 3 dimensional (3D) cross-linked hydrogel which behaves as ECM offering mechanical and biochemical cues to the cells. Moreover, the shape of the photo-cross-linkable hydrogel is adjustable. The engineered geometry to the hydrogel would effectively enhance the alignment of cells and the differentiation of stem cells. However, there are some issues to be addressed to achieve highly hierarchical tissue-like structures, including it is (1) difficult shaping arbitrary geometry of hydrogels, especially non-photo-cross-linkable hydrogels, (2) complicated to deliver highly hierarchical cell arrangements in engineered hydrogels, and (3) unable to assemble various cross-linked hydrogels containing different cells for co-culture. Here, we adapt our investigations of electric microfluidic platform to the application of tissue engineering based on the three demonstrated features of the platform that is general to (A) fluid conductivity, (B) fluid geometry, and (C) object scale. Applying the three features, we propose to achieve: (A) generation and manipulation of various cross-linkable prepolymer solution droplets by electrowetting-on-dielectric (EWOD) and dielectrophoresis (DEP), (B) shaping of prepolymer solution droplets by DEP, (C) arrangement of cells in prepolymer solution droplets and cross-linked hydrogel blocks by EWOD and DEP. Moreover, the platform is proposed to obtain three major goals: (1) concentrating and arranging cells on the μm scale, (2) shaping and actuating prepolymer solution droplets on the 100's μm scale, and (3) assembling multiple cell-hydrogel pairs for co-culture studies on the mm-cm scale.

In tissue engineering studies, it is essential to provide a biomimicking environment for in vitro cultivation of cells and further functional organ units (e.g., liver lobules, nephrons, pancreatic islets, and osteons). Biological tissues/organs consist of hierarchical organization of various extracellular matrix (ECM) molecules along with spatial arrangement of cells and soluble factors. Recently, researchers culture cells in a 3 dimensional (3D) cross-linked hydrogel which behaves as ECM offering mechanical and biochemical cues to the cells. Moreover, the shape of the photo-cross-linkable hydrogel is adjustable. The engineered geometry to the hydrogel would effectively enhance the alignment of cells and the differentiation of stem cells. However, there are some issues to be addressed to achieve highly hierarchical tissue-like structures, including it is (1) difficult shaping arbitrary geometry of hydrogels, especially non-photo-cross-linkable hydrogels, (2) complicated to deliver highly hierarchical cell arrangements in engineered hydrogels, and (3) unable to assemble various cross-linked hydrogels containing different cells for co-culture. Here, we adapt our investigations of electric microfluidic platform to the application of tissue engineering based on the three demonstrated features of the platform that is general to (A) fluid conductivity, (B) fluid geometry, and (C) object scale. Applying the three features, we propose to achieve: (A) generation and manipulation of various cross-linkable prepolymer solution droplets by electrowetting-on-dielectric (EWOD) and dielectrophoresis (DEP), (B) shaping of prepolymer solution droplets by DEP, (C) arrangement of cells in prepolymer solution droplets and cross-linked hydrogel blocks by EWOD and DEP. Moreover, the platform is proposed to obtain three major goals: (1) concentrating and arranging cells on the μm scale, (2) shaping and actuating prepolymer solution droplets on the 100's μm scale, and (3) assembling multiple cell-hydrogel pairs for co-culture studies on the mm-cm scale.
We propose a simple method for rapid fluid mixing by generating tiny bubble in the fluid. The tiny bubble is levitated by the buoyancy force from the bottom of the chip and thus enhances the fluid convection. A natural wood with pore size of around 100 nm was used to disperse air to micro-bubble in the fluid. These micro-bubbles were generated by a piezoelectric actuator placed at various positions in the device to sense the position of the otoconia. The deflection produces a voltage of 0.416 mV indicating the proximity of the particles. Using this information we describe a functional block of this device that aids in treating BPPV via an audio assisted CRP.

Furthermore, the detection limit is 5 ng/ml that is smaller than the cutoff value (11.16 ng/ml) of bladder cancer patient. The concentration of biomarker reaches 9000 ng/ml without any dilute process, which is around 40 times larger than the range of using 96-well ELISA with the same kit. Experimental data show that it greatly shorts the incubation time of the ELISA from 60 min to 8 min. In addition, the detection range of bead-based ELISA is promising for point-of-care system.

We developed a novel MEMS device to mimic the pathophysiological condition wherein the kinocilia structure is modeled using PZT-2 micro-cantilever. The PZT-2 micro-cantilever is a piezoelectric material which can be used to generate magnetic field. A series of cilium-like micro structures with magnetic particles embedded were fabricated for precise flow manipulation through the magnetically driven control. A hydrodynamic analysis was performed to elucidate the underlying interaction between ciliated structures and the induced flow fields. To fabricate ciliated structures, the micromachining method together with a casting process was employed. These ciliated structures were actuated in a homogeneous magnetic field generated by an in-house magnetic coil system for various beating cycles inside a microchannel. Three representative signal waveforms were created to mimic the beating nature of cilia for different flow actuating functions, such as micromixing and micropropulsion. To investigate the flow structures of induced flow fields quantitatively, a numerical modeling method using Fluid-Structure-Interaction module was performed. In addition, a micro-particle image velocimetry (μPIV) experiment was conducted to characterize the nonreciprocal movement of ciliated structures for the quantification of hydrodynamic efficiency. By means of the presented analysis paradigms, a new flow manipulation strategy will be suggested to transport/agitate flows efficiently in microfluidics.

We present the controllable capillary folding of planar silicon nitride templates into 3D micro-structures via addition or retraction of water on demand. We demonstrate for the first time hydro-mechanical, repeatable actuation of capillary folded structures via addition or retraction of water on demand.

Session: 3B2 Micro/nano Sensors, Actuators & Systems 3 Room F1

Chair & Co-Chair: Wenjiang Shen & Dongfang Wang

(3B2-1) COMPARATIVE STUDY OF A HIGH PRESSURE SENSOR WITH RECTANGULAR DIAPHRAGM ………No.322
Z. Niu, Y. L. Zhao, B. Tian, F. F. Cuo
State Key Laboratory for Manufacturing Systems Engineering, Institute of Precision Engineering, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, China
This paper describes a comparative study between two kinds of high pressure sensors with rectangular diaphragm structure. In order to prove results of the study, the stress distributions of the rectangular membrane structure sensors were presented in this article. The stress distribution of the piezoresistance on the membrane was analyzed by the Finite Element Method (FEM) utilizing the ANSYS software. The two kinds of rectangular membrane structure sensors were fabricated with consistent process. The results of the comparative analysis indicate that the improvements of the sensing unit structure can enhance the sensitivity of the high pressure sensor and extend the measurement range of the sensor. Meanwhile, the accuracy requirement from double-sided lithography alignment is relatively low, which could ensure the rate of yield.

(3B2-2) LOW-STRESS PACKAGING FOR A MEMS ATMOSPHERE PRESSURE SENSOR …………………No.324
Mengying Zhang1,2, Zhan Zhao1, Lidong Du1, Zhen Fang1
1State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing, China
2University of Chinese Academy of Sciences, Beijing, China
In this paper, a kind of plastic packaging for a MEMS pressure sensor is introduced. The materials and parameters of the packaging are selected and optimized to reduce additional stress from packaging system so as to improve stability of the device. The packaging system is designed according to dimensions and functions of a kind of silicon piezoresistive pressure sensor. We choose silicon rubber as adhesive to bond chips onto lead-frames instead of epoxy to reduce stresses caused by thermal mismatch. Silicon gel is used to fill in the capsule to protect chip and wires, and the characters of the materials are studied for better stability.

(3B2-3) A TUNABLE METAMATERIAL ABSORBER EMPLOYING MEMS ACTUATORS IN THZ REGIME ……No.381
Tianyang Yang, Xiuhan Li, Wangqiang Zhu
Institute of Electronic and Information and Engineering, Beijing Jiaotong University, CHINA
A kind of tunable metamaterial absorber based on MEMS techniques is proposed in this paper. Firstly, an improved electric ring resonator (ERR) absorber model is put forward and the geometrical parameters are optimized to improve the absorption characteristics. Then the feasible fabrication method of the movable ERR structure is discussed. By employing MEMS actuators the frequency of absorption peak is tunable. A simulated full width at half maximum (FWHM) absorbance of 4% is achieved and the simulation results demonstrate a peak absorbance greater than 98% at the whole tunable frequency range from 1.08 THz to 1.20 THz.

(3B2-4) CONTACTLESS RF MEMS SWITCH USING PZT ACTUATION ………………………………………No.393
Tim Giffney1, Miao Yu1, K.C. Aw1, Haixia Zhang2
1Department of Mechanical Engineering, University of Auckland, New Zealand
2Institute of Microelectronics, Peking University, China
RF MEMS devices are competitive for handling high frequency microwave signals. In comparison to semiconductor devices, the performance of RF MEMS devices is highly linear, minimizing signal distortion. A contactless piezoelectric RF MEMS switch has been designed and simulated. Due to the use of a contactless design based on variable capacitance the reliability issues affecting contacting type MEMS switches are avoided. The structure is piezoelectrically actuated using a sputtered lead zirconate titanate (PZT) layer. Finite element simulation has been conducted to optimize the structure. Electrical simulation predicts that, by achieving an on-off capacitance ratio greater than 10, isolation will exceed 15 dB over the frequency range from 4 to 15 GHz. Preliminary isolation measurements on fabricated devices without the actuating layer showed 26 dB isolation at 4 GHz, similar to that modeled, although isolation did not decrease by the modeled trend at high frequencies approaching 15 GHz.
The 8th Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems
April 7-10, 2013, Dushu Lake Hotel, Suzhou, China

Tiancong Wang, Xinyi Zhang and Zhuhong Li
National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Peking University, Beijing, China

The Light Switchable Microelectrode Array (LSMEA), which has been proposed by our group previously. In this paper, the temperature rise of the LSMEA during the operation, which is of great importance to its biocompatibility, is simulated with COMSOL Multiphysics. We obtain both stationary and transient simulation results of current density distribution and related Joule heating. The results prove that the rise of temperature is small enough to avoid heat degeneration when implanted in vivo.

(3C2) TISSUE MORPHOLOGY CONTROLLED BY MICROPATTERNING AND SELF-ASSEMBLY OF VASCULAR MESENCHYMAL CELLS
Ting-Hsuan Chen1,2, Leiting Pan3, Xiaohu Zhu4, and Chih-Ming Ho1
1Department of Mechanical and Biomedical Engineering, 2School of Creative Media, City University of Hong Kong, Hong Kong
3Key Laboratory Of Weak-Light Nonlinear Photonics, Ministry Of Education, TEDA Applied Physics School and School of Physics, Nankai University, Tianjin, China
4Mechanical and Aerospace Engineering Department, University of California, Los Angeles, USA

Creating patterns of constituent ingredients are essential for tissue regeneration. Using vascular mesenchymal cells (VMCs) which spontaneously aggregate into multicellular structure, we demonstrate a MEMS-based method to direct the assembly of VMCs into desired tissue patterns. Incorporating the inherent chirality of VMCs revealed by micro-engineered substrates, differences in initial cell plating can be amplified into the formation of exquisite radial structures resembling the crosssectional structure of liver lobules. Furthermore, when cocultured with VMCs, vascular endothelial cells (ECs) tracked with the VMCs and formed a coherent radial pattern, indicating the applicability to heterotopic cell organization. We envision method has broad implications for building instructive microenvironment for tissue engineering.

(3C2) ELECTROSPUN PVDF NANOFIBERS AND APPLICATIONS
Daoheng Sun, Tingping Lei, Yuanzhe Su, Xiaochun Qu, Lingyin Wang, Dezhi Wu, Gaofeng Zheng
Dept. of Mechanical and Electrical Engineering, Xiamen University, China

14:30-15:30 Session: 3D2 Cross-Starit Invited Session 7 Room M3
Chair&Co-Chair: Da-Jeng Yao & Wei Wang

(3D2-1) ELECTROSPUN PVDF NANOFIBERS AND APPLICATIONS
Daoheng Sun, Tingping Lei, Yuanzhe Su, Xiaochun Qu, Lingyin Wang, Dezhi Wu, Gaofeng Zheng
Dept. of Mechanical and Electrical Engineering, Xiamen University, China
PVDF nanofibers have potential wide applications because of its unique characteristics. Electrospinning is a natural nanofiber fabrication process for realizing the phase transition and polarization which is the fundamentals of the piezoelectric effect. PVDF nanofibers with piezoelectric effect could be spun directly through both conventional electrospinning (Far-field Electrospinning, FFES) and Near-Field Electrospinning (NFES). In order to analyze the mechanism of the piezoelectric effect generation, mechanical spinning and mechanical drawing process was also investigated. Vibration—piezoelectricity transducer based on nanofibers mat was fabricated, and the measured results show that some process parameters such as solvent ratio plays important role in the transduction efficiency. As application examples, pressure sensor, battery separator based on the PVDF nanofibers are given. The properties of the sensor and the separator are also talk about.

(3D2.2) MELTING ANALYSIS USING BEAD-BASED MICROFLUIDICS FOR SINGLE NUCLEOTIDE POLYMORPHISM DETECTION

Yen-Wen Lu1, Shih-Tong Ding2, En-Chung Lin2, Lon (Alex) Wang3, Pei-Chun Kao4, Kan-Chien Li5

1Department of Bio-Industrial Mechatronics Engineering, 2Department of Animal Science and Technology, 3Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan

A miniature genotyping system was developed by using a bead-based microfluidic device and conducting melting analysis on the target DNA samples. The system offered a rapid genotyping scheme, which utilizes commonly-used microbeads conjugated to designed probes with gene targets forming a duplex for DNA melting analysis. Ataxia-telangiectasia mutation (ATM) gene, which had proven to be a major bio-marker associated with reproductive performance, was used to demonstrate the application of our system by using the results from melting analysis in SNP detection.

(3D2.3) COOLING STIMULATION ON CEREBRAL CORTEX FOR EPILEPSY SUPPRESSION WITH INTEGRATION OF MICRO-INVASIVE ELECTRODES AND TE COOLERS

Jin-Chern Chiou1,2, Lei-Chun Chou1, Shiang-Wei Tsai3, Kuang-Chou Hou4, Chih-Wei Chang1

1National Chiao-Tung University, Hsinchu City, Taiwan
2China Medical University, Taichung City, Taiwan

Epilepsy suppression with cooling stimulation is the primary purpose for this study. In this dissertation, cooling stimulation was implemented and demonstrated on cerebral cortex of rats. Electrodes with needle structure was designed and fabricated by using MEMS technology to minimize the size of device. A TE cooler was used to create cooling source and it can be control via electrical current. A cooler component was integrated with an electrode and a TE cooler, in addition, a thermal sensor was also combined with it to detect temperature variation, which was affected by cooling cerebral cortex. The cooler components were implanted on surface of cerebral with deep brain stimulation and the thermal sensors were penetrated into cortex to measure temperature variation which can verify the functions of cooler components. In our experimental results, electrodes with needle structure can improve efficiency of epilepsy suppression due to the particular structure. Duration, frequency and average single time of epileptic waveforms were used to identify to performance of suppression.

Flexible MEMS, Sensors and Printed Electronics 2

14:30-15:30 Session: 3E2

Chair & Co-Chair: Dong Sun & Cheng-Hsin Chang

(3E2.1) DEVELOPMENT OF FLEXIBLE NEURAL PROBES USING SU-8/PARYLENE

Zhuolin Xiang1,2, Hao Wang1, Songsong Zhang2, Shih-Cheng Yen2,3, Minkyu Je3, Wei-Ming Tsang2, Yong-Ping Xu2, Nitisit V. Thakor1, Dino-Lee Kwong1, Chengkao Lee2

1Department of Electrical & Computer Eng., National University of Singapore, Singapore
2Singapore Institute for Neurotechnology (SINAPSE), National University of Singapore, Singapore
3Institute of Microelectronics, Agency for Science, Technology and Research (A*STAR), Singapore

A new process for making SU-8 neural probe with fluidic channels and gold electrodes based on multi-layered thin parylene and SU-8 is presented here. This approach can realize a thin 5 µm gap between electrode surface and neural cells. The thin gap will help to enhance the neural signal acquisition. Fluidic testing and mechanical testing are conducted to ensure the device reliability.

(3E2.2) STRETCHING-TUNABLE METAL GRATINGS ON ELASTIC PDMS SUBSTRATE

Min Ji, Yan Xuan, Changsheng Yuan, Haixiong Ge, Yanfeng Chen

National Laboratory of Solid State Microstructures and Department of Materials Science and Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China

Stretching-tunable metal gratings were fabricated on elastic PDMS substrates by nanoimprint lithography combining with a metal transfer method using a sacrificial patterned layer. Water-soluble polyvinylalcohol (PVA) grating patterns were formed by a bi-layer imprint method. A 50nm thick chromium film was deposited on the PVA gratings, and then the PDMS substrate was pressed on the metal deposited PVA grating. Metal lines with a period of 550nm and linewidth of 270nm were finally transferred onto the polydimethylsiloxane (PDMS) sheets by dissolving the underlying PVA gratings in hot water with high yield (more than 90%). Optical diffraction tests demonstrated that the period of the metal gratings can be adjusted by stretching the PDMS sheets parallel and perpendicular to the grating direction. This method may have a potential application for fabrication of a low-cost, large-scale metal device on flexible substrates.

(3E2.3) FLEXIBLE PROXIMITY KEY-PANEL

Yuh-Chung Hu1, Cheng-Tao Ho1, Pei-Zen Chang1

1National Laboratory of Solid State Microstructures and Department of Materials Science and Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China

A new miniaturized genotyping system was developed by using a bead-based microfluidic device and conducting melting analysis on the target DNA samples. The system offered a rapid genotyping scheme, which utilizes commonly-used microbeads conjugated to designed probes with gene targets forming a duplex for DNA melting analysis. Ataxia-telangiectasia mutation (ATM) gene, which had proven to be a major bio-marker associated with reproductive performance, was used to demonstrate the application of our system by using the results from melting analysis in SNP detection.
This paper proposes a flexible proximity sensor fabricated by resembling print screen. The sensor unit is composed of a polyvinylidene fluoride (PVDF) layer sandwiched in between top- and bottom-electrode layers which are made of conductive silver ink. The sensing mechanism bases on the pyroelectricity of the PVDF layer. The aforesaid sandwiched sensor units are sprayed simultaneously on a flexible polyimide (PI) substrate layer by layer to form a sensor key-panel. The resembling print screen process is very low-cost. The prototype demonstrates that it is sensitive to human fingers, and therefore one of its applications is becoming for a flexible non-contact proximity key-panel for the user interface of instruments or machines. It may also be applied to proximity sensing or thermal radiation sensing. The proposed flexible proximity key-panel is also suitable for massive roll-to-roll process.

(3E2-4) ASSOCIATION OF A LOVE WAVE SENSOR TO THIN FILM MOLECULARLY IMPRINTED POLYMERS FOR NUCLEOSIDES ANALOGS DETECTION ...No.280
N. Lebal¹, H. Hallil¹, C. Dejous¹, B. Plano¹, A. Krsulja², R. Delepée², D. Rebière¹, L. A. Agrofoglio²
¹Univ. Bordeaux, IMS laboratory, CNRS UMR 5318, Univ. Bordeaux1 IPB, Talence, France
²Univ. Orleans, ICOA, CNRS UMR 7311, Orleans, France
The overall objective of this work is to develop and validate a quantitative, non-invasive therapeutic tool to detect selected urinary modified nucleosides as biomarkers of colorectal cancer chemotherapy and to monitor in fine the efficiency of the chemotherapy. Our methodology takes the advantage of high sensitivity of acoustic biosensor combined with high selectivity and robustness of thin molecularly imprinted polymer (MIP) film. In this paper we present a process based on a thin film of a MIP of adenosine 5'-monophosphate (AMP) coating on the sensor surface which is compatible with the acoustic wave propagation. Detection tests of AMP have been performed in aqueous media. The sensor response was recorded in terms of synchronous frequency and total insertion losses after both steps: extraction from, rebinding by the MIP layer. A frequency decrease of 6.875 Hz was recorded for 25μg/mL AMP concentration.

(3E2-5) COALITION TRANSPORTATION OF CELLS WITH OPTICAL TWEEZERS ...No.501
Xiangpeng Li, Jianjun Wang, Dong Sun
Dept. of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong
In optical cells manipulation tasks, optical manipulation works only when the cell is located within the optical trap. Currently, due to the lack of control techniques that automatically control cell transfer while locating the cell within optical trap consistently, cells must be manipulated carefully to avoid escape from optical trap, which significantly decreases the efficiency of manipulation task. As a result, the development of a control method for rapid and accurate positioning of cells is becoming a very challenging issue. In this paper, we addressed this challenging problem by developing a unique vision feedback control method that controls both cell positioning and cell trapping simultaneously. We first establish a new geometric model to confine the cell within a local region specified near the optical trap and form a Cell-Tweezers Coalition (C-T Coalition) during manipulation. Then, a potential field function based controller is proposed to drive C-T Coalition to the desired position. Experiments of yeast cell manipulation are performed to demonstrate the effectiveness of the proposed approach.
Laser-induced thermoelectric voltage (LITV) effect is observed firstly in La$_{0.8}$Sr$_{0.2}$FeO$_3$ (LSFO) thin films grown on the vicinal cut LaAlO$_3$ (10°) substrate by pulse laser deposition (PLD). The peak voltage of LITV signals increase linearly with the pulse laser energy density from the above result. It is significant for researching the accuracy and precision of photoelectric detector.

Poster and Exhibition 1 (P1) : Poster Number 1P1-1P100

1P1-001 MEASUREMENT METHOD OF LIGHT TRANSMITTANCE OF LAYERED METAL-DIELECTRIC METAMATERIAL
Akiiro Isozaki, Tetsuo Kan, Kyoshiba Matsumoto and Isao Shimoyna
Department of Mechatronics Informatics, The University of Tokyo, Japan
We propose a measurement method of light transmittance of metamaterials by directly contacting the metamaterial on a Si photodiode. Our measurement method enables direct detection of not only the propagation wave component but also the evanescent wave component through the metamaterial. In this paper, we fabricated a layered metal-dielectric metamaterial composed of Ag / Al$_2$O$_3$ layers on the Si photodiode. The transmittance property of evanescent wave was measured. This result indicates that our measurement system detects evanescent wave transferred through the fabricated metamaterial.

1P1-002 FOCUSING REFLECTOR AND LENS WITH NON-PERIODIC PHASE-MATCHED SUBWAVELENGTH HIGH CONTRAST GRATING
Qinglong Yu1, Changsheng Zhang2, Hongbo Zhu1, Miao Zhang1, Yongjin Wang1,3
1Institute of Communication Technology, Nanjing University of Posts and Telecommunications, China
2School of Opto-electronic Information Science and Technology, Yangtai University, China
3State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, China
In this paper, we propose novel planar subwavelength non-periodic high contrast gratings (HCGs) with excellent focusing abilities due to their phase-matched structures. Rigorous coupled-wave analysis (RCWA) method and finite-element method (FEM) are performed to investigate the non-periodic HCG structures for either focusing reflector or lens at the wavelength of 1.55μm. The structure with focusing ability is optimized to simultaneously meet the phase-matched conditions of the reflectors and lenses. When the grating bars material is silicon, the HCG serves as focusing reflector, and the HCG with the grating bars of GaN has transmission focusing ability. Both reflector and lens have large numerical aperture (NA), high diffraction efficiency and excellent focusing ability. These HCG structures are promising for designing and fabricating photonic devices that require focusing components, especially for silicon and III-nitride integrated photonic devices.

1P1-003 LASER-INDUCED THERMOELECTRIC VOLTAGE IN La$_{0.8}$Sr$_{0.2}$FeO$_3$ THIN FILMS
Z. Sun, L. S. Zhang, P. J. Wang and Y. Fang
Beijing Key Lab for Nano-Photonics and Nano-Structure, Capital Normal University, Beijing, China
Laser-induced thermoelectric voltage (LITV) effect is observed firstly in La$_{0.8}$Sr$_{0.2}$FeO$_3$ (LSFO) thin films grown on the vicinal cut LaAlO$_3$ (10°) substrate by pulse laser deposition (PLD). The peak voltage of LITV signals increase linearly with the pulse laser energy. The linear function is $y=0.05131x-0.02084$. The coefficient of determination and standard deviation for linear relationship reach 0.99667 and 0.00377 respectively. It shows a good linear relationship between peak voltage and laser energy densit from the above result. It is significant for researching the accuracy and precision of photovoltaic detector.

1P1-004 FREESTANDING WHISPERING-GALLERY MODE MICRODISK RESONATOR
Zheng Shi1, Shumin He1, Hongbo Zhu1, Miao Zhang1, Yongjin Wang2.
1Institute of Telecommunication and Technology, Nanjing University of Posts and Telecommunications, Nanjing, China
2State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China
This article proposes a high-Q value whispering-Gallery Mode (WGM) microdisk resonator, which is surrounded by photonic crystal with square lattice. Finite element method (FEM) is performed to model the microdisk resonator, and an ultrahigh quality factor (Q) value of 1.37×108н can be achieved in the wavelength of 1435.4nm. The proposed microdisk resonator is realized on a silicon-on-insulator (SOI) substrate. These structures of the device are defined by electron beam lithography, and then transferred into silicon layer by ion beam etching. The buried oxide layer is removed to generate freestanding photonic crystal and suspended microdisk.

1P1-005 SILVER NANOPARTICLES AGGREGATE ON PASSIVATED COPPER FOIL FOR SURFACE-ENHANCED RAMAN SCATTERING
Zuojuan Zhang, Li Chen, Gang Chen, Chunhong Lai, Hui Zhou
Defense Key Disciplines Lab of Novel Micro-nano Devices and System Technology, Chongqing University, China
Key Laboratory of Optoelectronic Technology & Systems Ministry of Education, Chongqing University, China
Surface-enhanced Raman scattering (SERS), as a powerful tool of chemical and biological analysis, has been investigated extensively in recent years. In this work, the reduction of silver nitrate by copper foil in aqueous medium was used to prepare silver nanoparticles and a method of applying ultrasonic
to passivate the copper foil in the sulfuric acid solution was proposed in order to regulate the deposition of the Ag nanoparticles. Analysis of the surface structure by a field-emission scanning electron microscope (FESEM) revealed that the silver nanoparticles deposited on the passivated copper foil were more regular. SERS spectra of Rhodamine6G (R6G) adsorbed on these Ag-Cu substrates were studied and compared. It’s found that the Ag-Cu substrate prepared with the Cu foil passivated by ultrasonic treatment has a significantly higher Raman signal sensitivity, better large-area uniformity, and 80% of original sensitivity was remained in 10 days of storage time in the air, indicating the substrates are fairly stable.

1P1-006

OPTIMAL DESIGN OF PERIODIC NANOSTRUCTURES FORMED IN SOLAR CELLS AS AN ANTREFLECTIVE LAYER

Yating Shi1, Shiyuan Liu1,2, Jinlong Zhu1, Chuanwei Zhang2, Xingguo Chen1, Zitong Tang1
1Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, China
2State Key Lab of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, China

Recently, periodic nanostructures with a rectangular profile have been widely used in the backside layer of solar cells to reduce the reflectance and to enhance the performance. In this paper, we design solar cells by applying two-dimensional periodic nanostructures with a trapezoidal profile as an antireflective layer. Through intensive simulations using rigorous coupled-wave analysis (RCWA), we attempt to optimize the profile parameters, including the sidewall angle (SWA), the pitch, and the height. Simulation results indicate that the rectangular profile displays a lower reflectance than the trapezoidal profile. Moreover, when the pitch is almost double of the width and the height is 1~2 times of the width, the total reflectance is reduced by 25~35%.

1P1-007

INDUCED-TRANSPARENCY IN SILICON-ON-INSULATOR BASED NOVEL RESONATOR SYSTEMS

Danfeng Cui, Chenyang Xue, Chao Liu, Liping Wei, Yonghua Wang, Jun Liu
1Key Laboratory of Instrumentation Science & Dynamic Measurement (North University of China), Ministry of Education, Taiyuan 030051, China
2Science and Technology on Electronic Test & Measurement Laboratory, Taiyuan 030051, China

In the paper, Coupled-resonator-induced-transparency (CRIT) phenomenon in a novel integrated on-chip optical resonator system is experimentally demonstrated. The system is composed of a four-rings resonator with 20μm diameter on silicon, whose spectrum has a narrow transparency peak with low group velocity. The CRIT effect is observed in the optical coupled resonator due to the classical destructive interference. This system can be used to study the slow and fast light experiments because of its simplicity and flexibility. In this work, a CRIT resonance with a quality factor of 7.2×10^4 is demonstrated with the same cavity size and the power coupling of the system is 60%, which agrees well with the theoretical analysis. The throughput and drop transmission spectra of the resonator are coincident well with each other.

1P1-008

ANALYSIS OF SECOND-ORDER RADIAL MODE DIPS IN RACETRACK OPTICAL RESONATOR BASED ON SOI RIB WAVEGUIDE

Weiliang1, Xue Chenchang1, Zang Junbin1, Cui Danfeng1, Wang Yonghui1, Zhang Wendong1,2
1Science and Technology on Electronic Test & Measurement Laboratory, North University of China, China
2Key Laboratory of Instrumentation Science & Dynamic Measurement, North University of China, China

In this paper, detailed design and analysis of a polarization mode splitting resonator based on silicon-on-insulator rib waveguide is presented. By analyzing the mode birefringence in the ultra-small rib waveguide, the directional coupler is introduced to the micro-ring resonator to realize the splitting of the quasi-TE and quasi-TM polarization modes from the same output port in specific wavelength range. It is demonstrated that after splitting the quasi-TM polarization mode, the Q value of the quasi-TE polarization mode is 23000 ±1000, about twice of that without splitting the quasi-TM polarization mode. This novel characteristic of race-track ring resonators is quite promising in many applications of optical components, such as the electro-optical modulators.

1P1-009

AN ELECTROSTATICALLY-DRIVEN AND CAPACITIVELY-SENSED DIFFERENTIAL LATERAL RESONANT PRESSURE MICROSENSOR

Bo Xie1,2, Haifeng Yao3, Jianbo Wang, Deyong Chen1, Jin Chen1
1State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing, China
2University of Chinese Academy of Sciences, Beijing, China
3Graduate School of Chinese Academy of Science, Beijing, China

This paper presents an electrostatically-driven and capacitively-sensed resonant pressure microsensor. The device was fabricated based on a SOI wafer requesting only 2 masks and simplified micro-fabrication steps including DRIE, sputter and wet etching. The sensor was quantified by an open loop request. The resonant frequency was shown to change linearly in response to applied pressure ranging from 50 kPa to 110 kPa. Experimental data analysis confirmed a sensitivity of 214 Hz/kPa with a linear correlativity of 0.9996.

1P1-010

GRAPHENE FILMS SYNTHESIZED BY ELECTROPLATED CU BY CHEMICAL VAPOR DEPOSITION

Wenrong Wang1,2, Chen Liang1,2, Tie Li1, Heng Yang1, Na Lu1 and Yueling Wang
1State Key Laboratories of Transducer Technology, Science and Technology on Microsystem Laboratory, Shanghai Institute of Microsystem and Information Technology, CAS, Shanghai, China
2Graduate School of Chinese Academy of Science, Beijing, China

In this paper, electroplated Cu was used as substrate to grow graphene by chemical vapor deposition (CVD) with a mixture gas of methane, hydrogen and argon. The different electroplated Cu gain size after annealing was studied. We present the growth temperature, growth time and methane concentration are key parameters that affect the structural perfection of graphene.
1P1-011
CHARACTERIZATION OF FLUID RESISTANCE IN NANOSTRUCTURED TiO2 (NST) FILM No.157
Li Nannan, Chen Jung
National Key Laboratory of/Micro/Nano Fabrication Technology, Peking University, Beijing, China
Embedded microchannels are required in many microfluidic devices. However, the channels may reduce the strength of the bulk substrate. In this study, Nanostructured TiO2 (NST) material is proposed to provide the fluid passage for the drug into the required location while still maintains very good strength. A simple method was proposed to obtain the pressure drop over NST filled channel and the fluid resistance was experimentally determined. The Darcy equation of NST films was setup, and the permeability was measured 1.475×10−11 m2. With a relatively high fluid resistance, further optimization should be carried out for NST microfluidic devices.

1P1-012
NANOPARTICLES SYNTHESIS AND SELF-ASSEMBLY BASED ON PLASMA-INDUCED RIEPING OF AG FILM ON Si SUBSTRATE ... No.217
Jun Liu, Hualei Wen, Yunbo Shi, Chao Zhai, Jun Tang, Binzheng Zhang
Key Laboratory of Instrumentation Science & Dynamic Measurement (North University of China), Shanshi, China
A simple and low cost method of particle synthesis and self-assembly process based on the plasma induced-ripening of Ag films is demonstrated. Ag films are deposited on p-doped Si substrates using a DC magnetron sputtering. With the assistance of O2/Ar plasma treatment, different sizes and densities of Ag nanoparticles are formed. The morphology of the samples is characterized by scanning electron microscopy. A clear decrease in the mean particle size and an increase in particle density are observed with increasing plasma power. Meanwhile, treatment time and plasma composition could be other two parameters which can affect the nanoparticles assembly process. SERS and PL enhancement of Ag nanoparticles is studied. From the experimental results, it provides a controllable method of changing the nanoparticle distribution on substrates, which has potential applications in the fields of solar cells, biosensors, and catalysts.

1P1-013
FABRICATION OF HYDROPHOBIC SURFACES WITH FLUORINATED ACRYLIC RESIN AND AMIDOGEN MODIFIED SILICA NANOPARTICLES ... No.228
D.Y. Tang, Y.D. Guo, F. Yang
Department of Chemistry, Harbin Institute of Technology, China
This study focuses on the modification of nano silica by silane coupling agent of KH550 at optimal production parameters. The effects of KH550 under different pretreatment conditions, the amounts of KH550 added on the properties of nano silica were investigated by FTIR and TG-DTA detections. Then the nano silica and fluorinated resin composites were prepared and the preferable reactive conditions were determined. The properties of the dielectric constant (κ), the loss (tanδ) were investigated by the electric capacitance. The transparency and hydrophobic abilities were investigated by UV-Vis spectroscopy and static contact angle values.

1P1-014
DEVELOPMENT OF CLUSTER ION SOURCE BASED ON MODULATED PULSE POWER MAGNETRON SPUTTERING TECHNIQUE ... No.239
C. H. Zhang1,2, H. Tsunoya1,2, H. Akatsuka1,2, H. Sekiya1,2, T. Nagase1,2, A. Nakajima1,2
1Department of Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Japan
A new ion source based on modulated pulse power (MPP) magnetron sputtering (MSP) was developed and demonstrated for cluster production. By employing MPP-MSP, both silver and silicon cluster beams were produced and analyzed by a quadrupole mass spectrometer. It is found that the maximum intensity of silver cluster anions reaches 500 pA, which is considerably higher than that with a conventional DC-MSP. For silicon cluster cation, the overall ion intensity of the cluster beam by MPP-MSP is about three times higher than that produced by DC-MSP.

1P1-015
WATER SPLITTING EFFECT ON PHOTOANODE MADE OF ZINC OXIDE NANORODS COATED WITH TUNGSTEN TRIOXIDE NANOPARTICLES ... No.247
Yuefan Wei1, Hejun Du1, Junhua Kong2, Xuehong Lu2, Lin Ke3, Xiaowei Sun4
1School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore
2School of Materials Science and Engineering, Nanyang Technological University, Singapore
3Institute of Materials Research and Engineering, Singapore
4School of Electric and Electronic Engineering, Nanyang Technological University, Singapore
The combination of semiconductor metal oxides with different band gaps is an effective strategy to widen the light absorption spectrum. In this work, zinc oxide (ZnO) nanorods coated with tungsten trioxide (WO3) nanoparticles were successfully synthesized via hydrothermal method followed by deposition from aqueous suspensions. ZnO/WO3 nanorods were observed to be densely and uniformly packed with high aspect ratio. This is consistent with the X-ray diffraction (XRD) analysis. Photoluminescence (PL) spectrum reveals that the as-synthesized ZnO/WO3 nanorods exhibit stronger emission centered at around 600nm, compared with pristine ZnO nanorods. Light absorption spectrum presents higher absorption over wider wavelength range. Photocatalytic activity (PEC) properties were investigated in a standard three-electrode system. The prepared ZnO/WO3 nanorods show increment (45%) in photocurrent density and improvement (20%) in maximum photocurrent conversion efficiency (PCE). These enhancements are mainly attributed to the extension of the light absorption and improved charge transport of WO3 nanoparticles integrated ZnO nanorods.

1P1-016
SYNTHESIS OF SUPERPARAMAGNETIC IRON OXIDE NANOPARTICLES IN CARBON REDUCTION METHOD ... No.292
Zhang Qiang, Xue Chenyang, Li Junyang, Chou Xiujian, Gao Libo, Hai Zhenyin
National Key Laboratory of Micro/Nano Fabrication Technology, Peking University, Beijing, China
The combination of superparamagnetic iron oxide nanoparticles (SPIONs) and carbon materials is widely used in biomedicine, magnetic field-induced drug delivery systems, and energy-related fields. A key issue for its application is how to prepare uniform and ultra-small SPIONs. In this study, SPIONs were successfully synthesized with a simple and efficient magnetron sputtering process. Furthermore, a synthetic route was established for the synthesis of SPIONs in carbon reduction, which is expected to broaden the application of SPIONs.
The current paper presents our new approach in synthesizing superparamagnetic iron oxide nanoparticles. The Fe3O4 nanoparticles (~500nm) are synthesized through carbon reduction method, which is a brand new method. The best parameters of this method are fixed through characterizing transmission electron microscope (TEM), X-Ray Diffraction (XRD) and Vibrating Sample Magnetometer (VSM) of the Fe3O4 nanoparticles synthesized under different experimental conditions. The TEM characterization results show that the best ratio of the carbon and ferric chloride is 3:1 and the most suitable calcination time is 3 hours. The nanoparticles, which were obtained with furnace cooling under vacuum condition after 3 hours calcining, have the best magnetic properties and most stable crystal from. Moreover, the quantitative analysis of this new method is taken to confirm the repeatability of this method. The actual qualities of the Fe3O4 nanoparticles are always consistent with the theoretical one, which indicates that the repeatability of this method is excellent.

NEW CONSTANT C TO CHARACTERIZE STRUCTURE DISORDER OF POLYSILICON THIN FILMS GROWN BY DIFFERENT PROCESSING FOR MEMS DEVICE APPLICATIONS

Quan Wang1, Ran Hu1
1School of mechanical engineering, Jiangsu University, Zhenjiang 212013, China
2State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, China

We have simulated the piezoresistance coefficients (Pie coefficients) in Si/Ge core-shell nanowires with a certain diameter and different thickness range of applications in MEMS field. The prevailing technique for PZT deposition is sol-gel method, but the stability of solution and repeated coating proved to have much influence on the physical parameters, the water sorption on membranes with different coating values and on the water sorption isotherms was discussed and compared with that for the well-known Nafion® membranes. The processing steps are scalable and may contribute to new products. CG structures may be an ideal irradiation protection material for aerospace, atomic energy, and nuclear science due to its high density.

ANALYSIS OF WATER SORPTION IN SULFONATED POLYIMIDE MEMBRANES- EFFECT OF THE MEMBRANE NANOSTRUCTURE

Yongli Li, Quang Trong Nguyen, Camille Lix on Buquet and Stephane Marais
PBS Laboratory, UMR 6270 CNRS, FR 3038, Université de Rouen, De Broglie Bld, 76821 Mont Saint Aignan Cedex, France.

Lead zirconate titanate (PZT) due to its large polarization, large dielectric constant and good piezoelectric performance has become popular in a wide range of applications in MEMS field. The prevailing technique for PZT deposition is sol-gel method, but the stability of solution and repeated coating can't be precisely controlled. Sputtering technique is used in this work for its relatively simple fabrication process, uniform thickness. In this work, PZT films are sputtered on Pt/Ti/SiO2/Si substrate prior to annealing. PZT preferential orientation is highly dependent on the sputtering parameters. X-ray diffraction (XRD) analysis has been performed to compare the crystal growth. TiO2 seed layer is also introduced in this work.
1P1-022

GRAPHENE AS DRY ADHESIVE INTERACTING WITH SEMICONDUCTOR SUBSTRATES No.412

Jun Sun, Tao Xu, Feng Xu, Xiao Xie, Litoa Sun
SEU-PEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing, China

In this study, we show how graphene could be utilized as a dry adhesive interacting with semiconductor substrates. Various potential semiconductor substrates are introduced and present similar results. This work opens up new prospects for the applications of graphene and would be valuable for the scientific studies of adhesion at nanoscale.

1P1-023

3D VISUALIZATION OF THE MICROSCOPIC CHARACTERISTIC IN MAGNETORHEOLOGICAL FLUIDS No.448

Yan Yang, Jun Huang
Key Lab. of Manufacture and Test Techniques for Automotive Parts, Ministry of Education, Chongqing Univ. of Technology, China

The 3D microstructure of the magnetorheological (MR) fluids is investigated using digital micro holography. A digital micro holographic system which can measure the rheological mechanism of MR fluids is presented. To accurately locate the focal plane of the particles in MR Fluids in digital holography, the overall-sharpness method is introduced which can effectively eliminate the noise on the focal plane determination. The two-threshold and image segmentation methods were used to obtain high quality binary images from which we can get satisfied measurement results of particle size and chain structure. The size distributions and the 3D visualization of microscopic characteristic of MR fluids are effectively measured. The experiment results show the digital holography is a well tool for measurement of the behaviors of MR fluids.

1P1-024

EFFECTS OF THREE PARAMETERS ON GRAPHENE SYNTHESIS BY CHEMICAL VAPOR DEPOSITION No.449

Agijorn Dhittal, Sutichai Chaisitsak
Department of Electronics Engineering, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, 10520 Thailand

A high quality graphene film on a copper foil was successfully grown by a CVD process using ethanol as a carbon source. The effect of growth temperatures (650-850°C), reaction times (5-50 min) and post-CVD cooling process rates (slow-cooling, fast-cooling and fast-cooling under ethanol exposure) on the formation of graphene was investigated by Raman spectroscopy and scanning electron microscopy (SEM). The graphene film deposited under the optimal conditions showed features of a high quality such as a high 2D/IG ratio of ~8, a low ID/IG ratio of 0.28 and a narrow full width half maximum (FWHM) of Lorentzian-shaped 2D peak of ~35 cm⁻¹. It was found that the quality of graphene film could be enhanced by optimizing the growth temperature and time, while the number of graphene layer was less sensitive to the cooling rate. However, the fast cooling process after the deposition was found to be a key process for obtaining graphenes with a large domain size. These findings may help to fabricate high-quality graphenes on a copper foil for electronic applications.

1P1-025

SOFT MAGNETIC PROPERTIES OF Ni₈₁Fe₁₉ FILM WITH DIFFERENT SUBSTRATES USED FOR MICRO-FLUXGATE ... No.451

Yang Shanglin, Liu Shabin, Guo Bo, Feng Wenguang, Hou Xiaowei
School of Electronics and Information, Northwest Polytechnical University, China

The soft magnetic properties of Ni₈₁Fe₁₉ films respectively with Ti, Ta and Cr substrates used for micro-fluxgate have been studied in this paper. The films were characterized using transmission electron microscope (TEM), X-ray diffraction (XRD) and vibrating sample magnetometer (VSM). The testing results showed that Ta substrate film, due to its ladder rising hysteresis loop, is more appropriate for fluxgate core in these four kinds of Ni₈₁Fe₁₉ films, film with no substrate and film with Ti substrate take the second place and the Cr substrate film would not be suitable as fluxgate core because of its bad soft magnetic properties.

1P1-026

FABRICATION OF COPPER NANOWIRES BY ELECTRODEPOSITION USING ANODIC ALUMINUM OXIDE TEMPLATE ... No.465

C.K. Chung¹,², C.Y. Yang³, M.W. Liao, and S.L. Li⁴
¹Dept. of Mechanical Engineering, National Cheng Kung University, Tainan, Taiwan
²Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan, Taiwan

In this paper, effects of potential and output mode on copper nanowire arrays via porous anodic aluminum oxide template by electrochemical deposition method have been investigated. The copper nanowire arrays were fabricated using electrochemical deposition in 0.2 M CuSO₄ by different potential modes including direct current (DC) and pulse. The nanostructure, morphology, chemical composition and phase of copper nanowire arrays were examined by scanning electron microscopy and grazing incidence X-ray diffraction. The results indicated that the copper nanowire arrays deposited by pulse mode revealed high aspect ratio despite high potential while that at higher DC potential was rather short due to the hydrogen generation in reduction reaction. The short duty cycle of 50% in pulse deposition can release the produced hydrogen for good nanowires formation.

1P1-027

MECHANICAL DURABILITY OF MICRO-NANO STRUCTURES SURFACE OF BLACK SILICON PRODUCED BY FEMTOSKOND LASER .. No.526

X. B. Guo¹, J. N. Ding¹, S. Y. Wang¹, J. H. Qiu¹,², B. Kan¹,², N. Y. Yuan¹,²
¹SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing, China
²Center for low-dimensional materials, micro-nano devices and system, Changzhou University, Changzhou, China

Hierarchical micro-nano structure surface on silicon is directly produced by femtosecond laser in air. The laser processing reduces the reflectance of silicon significantly in the studied wavelength range. Mechanical durability of the micro-nano structure surface has been studied. It is indicated that wear is significantly reduced under water saturation lubrication. Moreover surface modification with Perfluoropolyether improves its mechanical durability.
1P1-028

MECHANICAL PROPERTY OF NANOSCALE ZnO/Al2O3 MULTILAYERS: AN INVESTIGATION BY NANO-INDENTATION ... No.527
X.Q.Wang1,2, J.N.Ding1,2, N.Y.Yuan1,2, G.G. Cheng1, Y.Y.Zhu2,3, B. Kan2,3
1Center for Micro/Nano Science and Technology, Jiangsu University, Zhenjiang, China
2Center for low-dimensional materials, micro-nano devices and system, Changzhou University, Changzhou, China
3Jiangsu Key Laboratory for Solar Cell Materials and Technology, Changzhou, China

Nanoscale ZnO/Al2O3 multilayers were prepared on Silicon substrates by atomic layer deposition (ALD) method at 200°C. To understand the size effect of ZnO nanoscale film on hardness, the mechanical properties of the ZnO/Al2O3 multilayers were investigated using nano-indentation technique. As the bilayer period decreases from 60 to 2 nm, the micro-structures of ZnO layers changed from polycrystalline to amorphous. In the bilayer period interval of 60 to 8 nm, the variation of hardness versus bilayer period is similar to Hall-Patch relation, with maximum hardness and elastic modulus of ~10.69GPa and ~138.1GPa, respectively. However when the bilayer period is smaller than 6 nm, the nanolaminates became softer than the single ZnO film.

1P1-029

SYNTHESES OF ANTIBACTERIAL TiO2/PLGA COMPOSITE BIOFILMS ... No.121
Jau-Yi Wu1, Ching-Wen Li1, Ching-Hsiu Tsai1, and Gou-Jen Wang1,2
1Graduate Institute of Biomedical Engineering, National Chung-Hsing University, Taichung, Taiwan
2Ph.D. Program in Tissue Engineering and Regenerative Medicine, National Chung-Hsing University, Taichung, Taiwan

The main purpose of this study was to develop a TiO2/PLGA composite biomaterial for artificial dressing applications. E. coli and S. aureus were used as biological indicators for the disinfection efficiency of the proposed TiO2/PLGA composite. Various concentration ratios of TiO2 verse PLGA were implemented to optimize the disinfection efficiency of the composite biomaterial. Cell seeding of HECs and L929s on the TiO2/PLGA composite biomaterial are further conducted to evaluate the feasibility of the TiO2/PLGA composite biomaterial on wound healing applications. Experimental results illustrated that TiO2/PLGA composite biofilms containing 10% of TiO2 nanoparticles revealed an effective antibacterial property but kept a comparatively low suppression on cell growth.

1P1-030

QUANTITATIVE CHARACTERIZATION OF SPECIFIC TARGETING OF TUMOR CELLS BY ANTIBODY-FUNCTIONALIZED PARTICLES ... No.480
M.T. Stammi1, A.S. Trickey-Glassman1, L. Jiang1,2, Y. Zohaie1,2
1Department of Aerospace and Mechanical Engineering, College of Optical Sciences
2Department of Biomedical Engineering, University of Arizona, USA

Receptor-ligand binding has been one of the more popular approaches to specifically targeting tumor cells. In this work, targeting efficiency was quantitatively characterized using silica particles functionalized with EpCAM antibodies and EpCAM-expressing BT-20 breast cancer cells. The effects of incubation time and particle concentration on the number of functionalized particles bound to target cells were experimentally investigated. The number of bound particles was found to increase with particle concentration, but not necessarily with incubation time. While particle desorption and cellular loss of binding affinity in time seem to be negligible, cell-particle-cell interaction was identified as the limiting mechanism for the number of particles bound to target cells. The current findings suggest that separation of a bound particle from a cell may be detrimental to cellular binding affinity.

1P1-031

NUMERICAL SIMULATION ON PATTERN FORMATION BY VASCULAR MENSENCHYMAL CELLS BASED ON THE EXOGENOUS SOURCE OF ACTIVATOR ... No.284
Hongwei Liu, Xin Zhao
Institute of Robotics and Automatic Information System, NanKai University, Tianjin, China

This paper mainly explores the Turing patterns and pattern transferring of the vascular mesenchymal cells by external addition of activator. First, we perform a one-dimensional analysis to obtain the Turing space of the exogenous source of activator, and then explore the various Turing patterns with varying the ratio of the diffusion coefficients of activator and inhibitor, because of the essence of Turing bifurcation. Simulation results show that the Turing patterns range from spots to stripes, next labyrinths and finally holes with increasing the ratio or the dosage of the exogenous source of activator, or in other words, from dense to sparse. Furthermore, we explore the patterns transferring in the bistability system, and obtain the secondary patterns of the diverse patterns by altering the external addition of activator and various secondary patterns can be transferred from an initial pattern.

1P1-032

IMPROVEMENT OF DNA ORIGAMI'S ADSORPTION ON SILICON SUBSTRATE ... No.335
Penglei Dai1,2, Honglu Zhang1, Tie Li2, Yuejun Wang2, Jie Chao2, Chunhai Fan1
1State Key Laboratories of Transducer Technology and Science and Technology on Micro-system Laboratory, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China
2Laboratory of Physical Biology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China

DNA origami, in which a long single strand of DNA is folded into a shape using shorter 'staple strands', promises low-cost ways to create nanoscale shapes and can even display patterns of binding sites of 6-nm-resolution, in principle allowing complex arrangements of carbon nanotubes, silicon nanowires, or quantum dots [1]. However, adorption of origami appears better results on mica substrate, which cannot be compatible with the complementary metal oxide semiconductor (CMOS) process. Here we describe a method to improve the adorption of origami on silicon substrate, by quantitative control of the adorption conditions, which will hopefully make contributions for churning out nanoscale shapes with CMOS process in the future.
USE OF CELL MORPHOLOGY AS AN EARLY BIO-SENSOR FOR VIRAL INFECTION

Xianting Ding1, Ning-xiu Liu2, Kyle Matisso1, Meng-shu Sun2, Chih-Ming Ho1, Xin Zhao2
1Mechanical and Aerospace Engineering Department, University of California, Los Angeles, California, USA
2Institute of Robotics & Automatic Information System, Nankai University, Tianjin, China

This paper reports a correlation between cellular morphology and the ability of adapting Vescicular stomatitis virus (VSV) infection. A time-lapse approach was employed to track the individual difference between homologous cells in adopting viral infection. Our single-cell analysis indicates that upon viral infection, mature cells that are in rounder shape are less likely to be infected after 24 hour infection. On the other hand, cells undergoing proliferation, which are in rounder shape, tend to adopt much higher viral infection within the same amount of time. This fact suggests cellular morphology may be an early biosensor for viral infection. The findings in this paper could potentially be applied to other viral infection models.
CARBON NANOTUBE BASED HEAT-SINK FOR SOLID STATE LIGHTING .. No.525
F. Santagata, G. Almanno, S. Vollebregt, C. Silvestri, G.Q. Zhang, P.M. Sarro Laboratory of Electronic Components, Technology & Materials (ECTM), DIMES, Delft University of Technology, P.O. Box 5033, Feldmannweg 17, 2600 GB Delft, The Netherlands.
A new carbon-nanotube-based (CNTs) heat sink is developed. Due to their high thermal conductivity and aspect ratio, CNT boundary layers are used as fins of the heat sink. Fins as high as 380 μm with an aspect ratio of 30 are fabricated. For the thermal characterization of the heat sink, a microheater is integrated with the heat sink and it is also used as temperature sensor. It is realized by using the low doped silicon bulk as electrical resistor. The sensor shows a sensitivity of 0.6 Ω/K. A thermal characterization is performed to evaluate the heat dissipation by the CNT-based heat-sink. Results show that up to 18% of power reduction can be achieved with the proposed CNTs-based heat-sink configuration.

MICROFLUIDIC DEVICE FOR SUPER-FAST EVALUATION OF MEMBRANE PROTEIN CRYSTALLIZATION... No.118
Hsin-Jui Wu 1, Tanara Bastia 1, Mary Morphew 2, D. C. Rees 2, Michael H. B. Stowell 1, and Y. C. Lee 1
1 University of Colorado, Boulder, Colorado, USA
2 California Institute of Technology, Pasadena, California, USA
Membrane proteins embedded in bio-layer lipids of cell membrane have unique functions including inter-cell communication, ions/molecules transport. And there is more than 50% of drug design emphasizes on membrane proteins specifically studying on their structure and formation. Recently we reported the structural and functional studies of membrane protein lipid nanoparticles in native biological membrane. This virus-like nanoparticle formed by self-assembly crystallization process of membrane protein and lipids is critical to pharmaceutical industrial. These nanoparticles have a variety of potential applications in drug delivery and drug design that can carry specific the membrane protein on aim or release control. The previous studies stay on an efficient method with a standard dialysis process that has low-throughput, time consumption, and protein sample waste. However, the interdisciplinary cooperation between in biology and Micro electro mechanical systems (MEMS) has been tremendous developed such as Bio-MEMS and Lab-on-a-chip technologies. Here we demonstrate a new device with a high-throughput membraneless microfluidic device to fast produce the reconstitution of membrane protein nanoparticles. The reconstitution process in continuous micro flow dominated by convection-diffusion phenomena in microfluidic channel can be completed in seconds to form protein/lipid particles under multiple conditions applied. The controllable syringe pumps is used to test a combination of conditions rather than using inefficient hand pipette. Moreover this novel microdevice can save protein sample consumption down to only nanoliter or picoliter. By using this device, we have an ability to rapidly form uniform membrane protein lipid nanoparticles and we believe this new method will make a transformative impact to commercial applications in variety of areas from biology to pharmacology.

INTEGRATED LENSES IN POLYSTYRENE MICROFLUIDIC DEVICES .. No.125
Yiqiang Fan, Huawei Li and Ian G. Foulds
Electromechanical Microsystems & Polymer Integration Research (EMPIRe) Group
King Abdullah University of Science and Technology (KAUST), Saudi Arabia
This paper reports a new method for integrating microchannels into microfluidic devices for improved observation. Two demonstration microfluidic devices were provided which were fabricated using this new technique. The integrated microchannels were fabricated using a free-surface thermocompression molding method on a polystyrene (PS) sheet which was then bonded on top of microfluidic channels as a cover plate, with the convex microchannels providing a magnified image of the channel for the easier observation of the flow in the microchannels. This approach for fabricating the integrated microchannels in microfluidic devices is rapid, low cost and without the requirement of cleanroom facilities.

STUDY ON TRAPPING TWO PARTICLES WITH DIELECTROPHORETIC MICROFLUIDIC CHIP No.134
Li-guo Chen 1, Hai-hang Cui 2, Shao-qian Li 1
1 Robotics and Microsystem Center, Soochow University, Suzhou, China
2 School of Environment and Municipal Engineering, Xi’an University of Architecture and Technology, Xi’an, China
In microfluidic field, how to capture, manipulate and separate micro-particles is an important problem. At the same time, the biological techniques usually suffer from high costs and time consumption. The development of MEMS technology has provided a solution for these problems. In this paper, we proposed a novel dielectrophoretic microfluidic chip in order to capture and manipulate the particles in microfluidic channels. The chip was fabricated by using a computer-controlled micro-fabrication equipment. To demonstrate the feasibility of the chip, we successfully manipulated two particles with a 10 μm diameter in a microfluidic channel. This work provides a new method of micro-particle manipulation and motion control.

LOW-COST RAPID PROTOTYPING OF FLEXIBLE PLASTIC PAPER BASED MICROFLUIDIC DEVICES No.150
Yiqiang Fan, Huawei Li, Ying Yi and Ian G. Foulds
Electromechanical Microsystems & Polymer Integration Research (EMPIRe) Group
King Abdullah University of Science and Technology (KAUST), Saudi Arabia
This research presents a novel rapid prototyping method for paper-based flexible microfluidic devices. The microchannels were fabricated using laser ablation on a piece of plastic paper (permanent paper), the dimensions of the microchannels was carefully studied for various laser powers and scanning speeds. After laser ablation of the microchannels on the plastic paper, a transparent poly (methyl methacrylate)(PMMA) film was thermally bonded to the plastic paper to enclose the channels. After connection of tubing, the device was ready to use. An example microfluidic device (droplet generator) was also fabricated using this technique. Due to the flexibility of the fabricated device, this technique can be used to fabricate 3D microfluidic devices. The fabrication process was simple and rapid without any requirement of cleanroom facilities.
1P1-043 SYNTHESIS OF SCALABLE MICRODROPLETS WITH FLUID INSTABILITY OF SHEARING FLOW IN MICROFLUIDICS

Xuanting Dong1, Jian Yang1, Zhijian Ma1, Dandan Liu1, Weipeng Wang1, Jianjun Ye1, Jeong Wong2, Matt Barnes3
1Institute of Process Equipment, Zhejiang University, China
2Department of Mechanical and Aerospace Engineering, University of California, USA
3Department of Material Engineering, South China University of Technology, China

This paper reports a microfluidic reactor for synthesizing micro- and nano-droplets using fluid shearing instability of immiscible flow in microchannels. Three factors, flow rate between the two inputs, spout geometry and surface tension are numerically studied. Based on the simulation, a device with the optimal parameters was fabricated and tested. Both computational fluid dynamics (CFD) simulation results and experimental results suggested that this technique is capable of conveniently controlling the droplets sizes from hundreds of micrometers down to several micrometers or even nanometers. This pilot research offers a proof of concept demonstration using instabilities in the microchannels to synthesize large quantity of microdroplets. Although the microdroplets in this study were formed by DI water containing Tween20 and silicon oil, the design with modification could be applied for synthesis of other types of micro- and nano-droplets.

1P1-044 STUDY OF POLYMERIC MEMS MICRO-PUMP ACTUATED BY PZT BIMORPH

Yi Luo1, Xionglong Yin1, Xiaodong Wang2, Zongbo Zhang2
1Key Laboratory for Micro-Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, China
2College of Mechanical and Electronic Engineering, China University of Petroleum, Qingdao, China

Check valve micro-pump is easy to reach high flow rate and has a promising application prospect in micro fluidic devices and artificial organs. There are several vibration elements in check valve pump, including actuator, membrane and valves. The vibration performances of these elements have a coupling influence on the performance of micro-pump. In this paper, the comprehensive analysis was carried out using finite element model. Four kinds of micro-pumps with different valves and actuators were designed and fabricated. The performances of each kind of micro-pumps are studied by frequency sweeping experiments. Experimental results approximately coincide with the theoretical analysis.

1P1-045 STUDY OF GENE TRANSFECTION ENHANCEMENT AND PARAMETERS OPTIMIZATION USING MICROFLUIDIC ELECTROPORATION CHIP

Yung-Chiang Chung1, Wei-Jie Liao1, Yu-Tzu Huang2, Cheng-Yuan Wu1, Cheng-Wei Tsai1
1Department of Mechanical Engineering, Ming Chi University of Technology, New Taipei, Taiwan
2Department of Life Science, National Tsing Hua University, Taiwan

We developed a simple fabrication, low voltage, low power consumption and easy way of enhancing gene transfection efficiency: combining high and low electric fields, adjusting the voltage, pulse number, duration, buffer and conductivity. The 293T cells (Human Embryonic Kidney cells) were tested. The optimum combining condition was a high electric field 1600 V/cm for 0.6 ms × 2 and low electric field 800 V/cm for 1.2 ms × 3. It resulted in a survival rate larger than 70%, and the transfection rate was about 45%. The buffer of the largest transfection rate was Hypoosmolar. The conductivity of the buffer was an important parameter, and the appropriate value was 1.0-1.6 mS/cm. The transfection rate of 293T cells using Cytoporation buffer could be enhanced by adding potassium ion, and the volume ratio should be lower than 2%.

1P1-046 CNTs GATED NANOFLUIDIC SYSTEM FOR SINGLE BACTERIUM DETECTION BY GNP-BASED REDOX SIGNAL AMPLIFICATION

Po-Chao Wen1, Jen-Kuei Wu1, Hwan-You Chang4 and Fan-Gang Tseng
1Department of Mechanical Engineering and System Science, National Tsing Hua University, Taiwan
2Department of Life Science, National Tsing Hua University, Taiwan
3Division of Mechanics, Research Center for Applied Sciences, Taiwan

In this work, we report a portable microfluidic chip based on gold nanoparticle-enhanced electrochemical detection for single-bacteria diagnostic. The possibility of single-bacteria detection is realized here by using electroactive molecules modified on gold nanoparticles (NPs) to detect and differentiate Staphylococcus aureus and Pseudomonas aeruginosa. The detection limit of these two electroactive molecules is near femtomolar (1 pM) when immobilized on gold nanoparticles (NPs), and the minimum amounts of gold NPs required in the detection is around thousands (10^3 particle/μl). A concentration of couples whole bacteria (<10 cells/μl) is detected by CV measurements. The liner detection limit concentration is form 1-1000 cells/μl. The results showed that the portable biosystem chip has great potential as a device for single-particle or possibly even single-organism detection.

1P1-047 OPTIMIZED CAPILLARY BASED MICROARRAY USED FOR DNA ANALYSIS

Hong Chen1,2, Liang Qi1,2, Zehi Zheng1,2, Xiangming Que2, Xiao-ling Lai1,2
1Department of Mechanical and Electrical Engineering, Xiamen University, China
2MEMS Research Center of Xiamen University, Xiamen University, China

Microarray is an very useful tool for nucleic acid detection, but the procedure is labor intensive and time consuming. Microfluidic chip-based microarray saves time with better performance, while the low spot density and probe number, a method is reported here to prepare microarray in a capillary by generating probe droplets array. The probes in droplets are immobilized onto the inner wall of the capillary to form an one-dimensional probe array, and then a sample solution is introduced to hybridize with the probe array. This paper demonstrated the droplets array, probe array and hybridized spots array which were generated inside the capillary, then the cross contamination caused by the generation of droplets array was evaluated. Data showed that the cross contamination was only a very small portion. It can be regarded as the background and eliminated by subtracting.
EXPERIMENTAL AND THEORETICAL STUDY OF HYDRODYNAMIC CELL LYING OF CANCER CELLS IN A HIGH-THROUGHPUT CIRCULAR MULTI-CHANNEL MICROFILTRATION DEVICE

W. Ma1, D. Li2, H. Shagoshtasbi1, A. Shukla1, E. S. Nungroho1, Y. Zohar3, Y.-K. Lee1
1Dept. of Mechanical Engineering, Hong Kong University of Science and Technology, Hong Kong
2Guangzhou First Municipal People's Hospital, Guangzhou 510180, China
3Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ 85271, USA

Microfiltration is an important microfluidic technique suitable for enrichment and isolation of cells. However, cell lysing could occur due to hydrodynamic damage that may be detrimental for medical diagnostics. Therefore, we conducted a systematic study of hydrodynamic cell lysing in a high-throughput Circular Multi-Channel Microfiltration (CMCM) device integrated with a polycarbonate membrane. HeLa cells (cervical cancer cells) were driven into the CMCM at different flow rates. The viability of the cells in the CMCM was examined by fluorescence microscopy using Acridine Orange (AO)/Ethidium Broide (EB) as a marker for viable/dead cells. A simple analytical cell viability model was derived and a 3D numerical model was constructed to examine the correlation of between cell lysing and applied shear stress under varying flow rate and Reynolds number. The measured cell viability as a function of the shear stress was consistent with theoretical and numerical predictions when accounting for cell size distribution.

ELECTRIC MANIPULATION OF DROPLETS IN MICROFLUIDICS

Hongbo Zhou1,2, Shuhuai Yao1
1Department of Mechanical Engineering, the Hong Kong University of Science and Technology, Hong Kong
2State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Science, Shanghai, China

Precharged droplets can facilitate manipulation and control of low-volume liquids in droplet-based microfluidics. In this paper, we demonstrate non-contact electrostatic charging of droplets by polarizing a neutral droplet and splitting it into two oppositely charged daughter droplets in a T-junction microchannel. Using numerical methods for two-phase flow coupling with electrostatics, for the first time, we performed parametric study to understand the mechanism of charging process. Moreover, cases (such as T-junctions with a notch, different sizes of droplets, and surfactants) were explored for practical applications. Finally, we demonstrated effective droplet manipulation in a sorting unit appending to the droplet charging.

SIMULATION AND FABRICATION OF CAPILLARY-DRIVEN MEANDER MICROMIXER FOR SHORT-DISTANCE MIXING

C. K. Chung1,2, C. C. Lai1, T. R. Shih1 and E. C. Chang1
1Dept of Mechanical Engineering, National Cheng Kung University, Tainan, Taiwan
2Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan, Taiwan

In this article, the micromixer with the planar design, short mixing distance, long-term high hydrophilic property and with power-free rapid fluid transport functions has been demonstrated compared with conventional syringe pump micromixers. The short-term capillary-driven micromixers with complex mixing structures have proven with large potential with the mixing ability and no power input advantages that it can be use in instant medical examination and medicine fabrication. Here, we have demonstrated the long-term capillary-driven meander micromixer with the planar design, short mixing distance, and rapid fluid transport functions. The contact angle measurement was made for verifying surface property of various materials and both glass and JSR are good candidates. The Glass-JSR-Glass capillary-driven meander micromixer can improve mixing efficiency up to over 95% at only 8 mm short distance.

RESISTIVE SWITCHING MODEL FOR ELECTROLYTE-OXIDE-SEMICONDUCTOR (EOS) STRUCTURE

X. Y. Ma, G. C. Sun, Y. F. Chen, W. G. Wu
National Key Laboratory of Science on Micro-Nano Fabrication, Peking University, Beijing, China

We find that the Electrolyte-Oxide-Semiconductor (EOS) structure, which is utilized a lot in micro/nanofluidic devices, is not perfectly insulated as previously believed. There is a significant leakage current through the insulator, and the I-V relationship shows one-way conductivity like a diode. We build a model considering the implantation of ions under forward bias and formation of conductive filaments in the oxide layer. Samples with oxide layers of different thicknesses and various fabrication processes were tested to verify our hypotheses. This structure provides a simple means to fabricate half-fluidic diodes, and can be utilized for ion detection and current control in microfluidic devices.

SIMULATION OF BACKWARD FACING STEP FLOW AT THE OUTLET MICRO-CHANNEL AND OPTIMAL DESIGN OF AMPEROMETRIC DETECTION CHIP

Xiaowei Liu, He Zhang, Xiaowei Han, Lin Zhao
Key Laboratory of Micro-systems and Micro-structures Manufacturing, Ministry of Education, Harbin, China

In this paper, we discussed the vortex which cause by the step structure at the outlet of microchannel. When the thickness of boundary layer and the height of the channel are fixed value, the vortex area length was decided by Reynolds number. COMSOL Multiphysics simulations based on the turbulence model were performed to provide a better understanding of the Reynolds number and the length of vortex area in the compound structure of microfluidic amperometric detection chip. According to the simulation results, we discussed the value for the height of the microchannel and the thickness of auxiliary bonding layer, we determined the manufacture parameters and assembly process of the microfluidic chip. Furthermore through the simulation results discussion of the microfluidic properties, we described how to set experiment conditions for amperometric detection.

DROPLET FORMATION IN A T-SHAPED MICROFLUIDIC JUNCTION USING PRESSURE-DRIVEN PUMPING

Qiong Wei1, Yao Teng2, Chunyang Xiong1,2
Key Laboratory of Micro-systems and Micro-structures Manufacturing, Ministry of Education, Harbin, China

In this paper, we discussed the droplet formation in a T-shaped microfluidic junction using pressure-driven pumping.
1P1-054

MICROFLUIDIC DEVICES WITH THREE-DIMENSIONAL GOLD NANOSTRUCTURE FOR SURFACE ENHANCED RAMAN SCATTERING

R. Takahashi, T. Fukunaga, Y. Utsumi, A. Yamaguchi

Laboratory of Advanced Science and Technology for Industry, University of Hyogo, Japan

Rapid and sensitive chemical sensing using microfluidic device equipped with sterically-bulky three-dimensional gold nanostructure (Au3D) was demonstrated. Au3D was expected as surface enhanced Raman scattering (SERS) active structure. Au3D was fabricated by convective self-assembly known as “coffee-ring” of the mixed solution of gold colloidal nanoparticle and polyacrylate latex particle. SERS measurements of a trace amount of 4,4′-bipyridine (4bpy) in aqueous solution were performed using Au3D in batch and flow format, and typical spectrum of 4bpy with enhanced peaks were immediately observed after dropping (batch) or injecting (flow). While detection limit was about 10 nM 4bpy in batch measurement, detection of further enhanced spectrum of 1 nM 4bpy was accomplished in flow measurement. We confirmed that Au3D was available for convenient SERS optofluidic measurement.

1P1-055

AN EXPERIMENTAL INVESTIGATION OF MICRO PULSATING HEAT PIPES

K.-S. Yang1, Y.-C. Cheng2, M.-S. Jeng1, K.-H. Chien1, J.-C. Shyu2

1Green Energy and Environment Research Lab., Industrial Technology Research Institute, Taiwan
2Department of Mechanical Engineering, National Kaohsiung University of Applied Sciences, Taiwan

Si-based micro pulsating heat pipes (μPHP) charged with HFE-7100 were tested at several heating powers with two orientations, 0° and 90°. The width of the channel is 0.8 mm in a μPHP having uniform channels, and 1.0 mm or 0.6 mm in the other μPHP. The depth of each channel is 0.25 mm. The overall size of each μPHP is 60 mm × 10 mm × 1.25 mm. Both visual observation and temperature response of the present μPHPs at various conditions were performed. The performance was compared between two μPHPs having either uniform channels or non-uniform channels at different heating powers. Results showed that both μPHPs could not start the pulsating two-phase flow in the channel of μPHPs as the μPHPs were operated horizontally at heating power ranging from 1 W to 7 W, except when the μPHP having non-uniform channels was tested at heating power of 7 W. Unlike the failure start-up for horizontal arrangement of μPHPs, μPHPs with a vertical arrangement shows a significant start-up phenomenon for both μPHPs with uniform and non-uniform channels due to the assistance from the start-up of both μPHPs arising from gravity force.

1P1-056

COMPARATIVE STUDY OF PID CONTROL AND MODEL PREDICTIVE CONTROL FOR A MICROFLUIDIC ELECTROPORATION SYSTEM

M. Ghadami1,2, H. Shagoshtasbi1, M.J. Mahjoob3, Y.-K. Lee1

1Department of Mechanical Engineering, HKUST, Kowloon, Hong Kong
2Mechatronics Engineering Department, University of Tehran, Kish Int’l Campus, Kish Island, Iran
3Institute of Artificial Intelligence and Robotics, University of Tehran, Tehran, Iran

This paper describes a comparative study of two feedback control methods for a microfluidic electroporation (EP) system. The regulation of the transmembrane voltage (Vm) and nanoelectropore radius (r) of HeLa cells on a micro EP chip was achieved using a linear Proportional-Integral-Derivative (PID) Controller and also Model Predictive Controller (MPC) based on the critical electric field for single-cell EP. Numerical simulations of static and dynamic responses of the two critical states, Vm and r, shows that feedback control can improve the cell viability and EP efficiency compared to open-loop (OL) system. The benefits and limitations of these two control methods for EP and possible future works have also been discussed.

1P1-057

MICRO DIFFUSER-TYPE MOVEMENT INVERSION Sorter for HIGH-EffICIENT SPERM SORTING

Yu-Nan Lin and Peng-Chun Chen and Ren-Guei Wu and Li-Chern Pan and Fan-Gung Tseng

Department of Engineering and System Science, National Tsing Hua University, Taiwan

In this study, we propose a microfluidic device with a diffuser type chamber to differentiate the sperm velocity by gradually lowering down the flow speed in diffuser by gradually increasing the width of the channel. When the sperm's moving speed match the flow speed, the sperms tend to have the ability to flow against the stream, thus separating the sperms at different specific positions along the diffuser according to their motility becomes gentle and fast. Most of the motile sperm will stay in the expanding area and the non-motile sperms will drift to outlet. Different from the previous study we proposed in IEEE NEMS, 2012, here we have three improvements: (1) Sperms can be separated in more detailed quality level. (2) Sperm will be more ability to flow against through a dumb bell area than by the traditional methods. (3) The space in the device can accumulate large amount of sperms (~millions).

1P1-058

DESIGN OF DETECTION ELECTRODE ON CONTACTLESS CONDUCTIVITY DETECTION IN CAPILLARY ELECTROPHORISIS MICROCHIP

HaiFeng Zhang1, Xiaowei Lu1, Xiaoshu Zhang2, Rui Weng2

1MEMS Center, Harbin Institute of Technology, Harbin, China

In this study, we experimentally study how the droplet formation in a T-shaped junction varies as the inlets pressure change by using a precise pressure-driven pump. The droplet length (L) and its production frequency (f) are measured as a function of the inlet driving pressure ratio of the dispersed to continuous phase (Pw/Po), respectively. A minimum pressure ratio for generating drops is found to be approximate 0.35 in our experiments. Results are compared with those of a system driven by syringe pumps which can vary the ratio of volume flow rate (Qw/Qo). Significant difference in the variation of droplet size exists between these two driven approaches when varying the flow control parameters: droplet size is more sensitive to the inlet pressure ratio.
Controllable conductivity detection has attained great attention in the last decade in capillary electrophoresis. But contactless conductivity detection is limited by its sensitivity, how to improve detection sensitivity has become the key of contactless conductivity. In this paper a novel extended model for the detection cell consisting of a network of resistors and capacitors is proposed according to the structure of contactless conductivity detection. The effect of the detector geometry on the sensitivity of contactless conductivity is studied. By simulation, the optimal parameters are obtained. Sandwich electrode structure was established to improve the performance of the detector and minimize the stray capacitance between the electrodes. Using the optimal electrode structure, the two peaks corresponding to K⁺ and Mg²⁺ are clearly resolved with complete separation.

1P1-059

USING THE NEWLY MICROFLUIDIC CHIP TO PRODUCE THE UNIFORM EMULSIONS WITH DIFFERENT CONCENTRATIONS

Chia-Hsien Yeh and Yu-Cheng Lin
Department of Engineering Science, National Cheng Kung University, Tainan, Taiwan.

The newly microfluidic chip successfully uses the micro-mixer and flow-focusing device to produce the water droplets with eleven different trypan blue concentrations, and applies these chitosan microparticles for encapsulating the magnetic nanoparticles. The sizes of these eleven types of water droplet with different trypan blue concentrations are uniform with a coefficient of variation less than 10%, and the chitosan emulsions with different Fe₃O₄ nanoparticles concentrations are used for magnetic targets, and the chitosan microparticles size is ranged from 44 μm to 83 μm in diameter.

1P1-060

THE STUDY OF THE ENHANCEMENT OF MICRO-VIBRATION-INDUCED HARVESTER BASED ON VAPOR IMPACTING

J. C. Hsieh¹, J. L. Lin², S. C. Shen³, David T. W. Lin⁴⁵

¹Green Energy and Environment Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
²Institute of Mechatronic System Engineering, National University of Tainan, Tainan, Taiwan
³Department of Systems and Naval Mechatronic Engineering, University of National Cheng Kung, Tainan, Taiwan
⁴CINF - Center for Individual Nanoparticle Functionality, Technical University of Denmark, Lyngby, Denmark
⁵Department of Mechanical Engineering, Southeast University, Nanjing 210096, China

We report a new surface treatment of inorganic electret materials which enhances the charge stability. Coating the surfaces with H₂, H₃, H₂H₂, H₂ - perfluorodecyltrichlorosilane (FDTS) makes the electret surface more hydrophobic which improves the surface charge stability.

1P1-061

INORGANIC ELECTRET WITH ENHANCED CHARGE STABILITY FOR ENERGY HARVESTING

Fei Wang¹, Oke Hansen¹ ²

¹Department of Micro- and Nanotechnology, Technical University of Denmark, DTU Nanotech, Lyngby, Denmark
²CINF - Center for Individual Nanoparticle Functionality, Technical University of Denmark, Lyngby, Denmark

Inorganic electrets are much better than that of polymer materials such as CYTOP. A demonstrator device with SiO₂ electrets shows promising results for energy harvesting applications.

1P1-062

THERMAL CONDUCTIVITY OF SINGLE-WALL CARBON NANOTUBES FILLED WITH WATER

Hui Chen, Chun Wei Zhang
Department of Mechanical Engineering, Southeast University, Nanjing 210096, China

Thermal conductivities for single-wall carbon nanotubes (SWNTs) filled with water are calculated with non-equilibrium molecular dynamics (NEMD) simulation method. Simulation results demonstrate the thermal conduction for the tube filled with water is better than the pure nanotube at the same conditions. It is believed the translational movement of the water molecules along the tube axis helps carry energy from the hot bath to the heat sinks, which results in the increase of the thermal conductivities. In addition, with the introduction of the water molecules into the nanotube, the additional interaction between the carbon atoms and the water molecules provide extra channels for phonon transport, which further intensifies the energy transport along the nanotubes. The effects of the temperature variation and the tube length on the thermal conductivities are also analyzed in this paper.

1P1-063

OPTIMIZATION OF THE MICRO CHANNEL LADDER SHAPE HEAT SINK

Chung-Hao Kang¹, Shih-Hsiang Tai¹, Sheng-Chung Chen¹, David T. W. Lin²

¹Institute of Mechatronic System Engineering, National University of Tainan, Tainan, Taiwan
²New Energy Division, MAG Technology CO., LTD, Tainan, Taiwan

The channel heat sink is in contact with the working fluid to remove the heat. But much channel will result higher pressure difference issue in the micro multi-channel heat sink. In this paper, a ladder shape channel (link between the parallel channel) is proposed to correct the problem of high pressure difference. The design of the link decreases the pressure difference for reducing the pump work of the micro multi-channel heat sink. The purpose of this paper is to maximize the efficiency of the micro multi-channel ladder shape heat sink by using optimization design. An optimization method based on the genetic algorithm and COMSOL 3-D conjugated thermal-fluid model is applied to establish the optimal geometry parameters of the link. The results show that this heat sink design can improve the efficiency more than 43%. And the heat removal of the proposed device is significantly improved.
This paper reports the design, test and application of a novel low frequency piezoelectric energy harvester. To achieve high output voltage at low frequency, both long and short modes of polyvinylidene fluoride (PVDF) are utilized in this device. Output voltage of the device are tested under different frequencies and accelerations. Rectifying bridge is used to reverse signals with negative signs and capacitor can be charged to light up a light emitting diode (LED).

LOW FREQUENCY VIBRATION ENERGY HARVESTING FROM HUMAN MOTION USING IPMC CANTILEVER WITH ELECTROMAGNETIC TRANSDUCTION

Kean C. Aw, Siva V. Praneth
Department of Mechanical Engineering, The University of Auckland, New Zealand
This paper reports an improved interfacial structure between electrode and electrolyte of Solid Oxide Fuel Cell (SOFC). We employed an imprint process to give fine patterns onto a ceramic electrolyte sheet. The imprint process is a powerful tool to transcribe nano- to micro-patterns on materials. In the present work, a sheet of ceramic compound material was prepared, and micro patterns were given on the sheet. After debinding and sintering, dense ceramic sheet with fine patterns were obtained. We prepared three kinds of electrolyte sheets with different surface patterns using this technique. Application of anode and cathode layers, the three fuel cell samples were assembled to test the cell performance. It was resulted that the finer pattern caused the primary harvested energy via the IPMC capacitive transduction.

IMPROVEMENT OF SOLID OXIDE FUEL CELL BY IMPRINTED PATTERNS ON ELECTROLYTE

Yang Xu, Fujio Tsumori*, Seiya Hashimoto, Masaaki Takahashi, Hyungoo Kang, Toshiko Osada, Hideshi Mura
Faculty of Engineering, Kyushu University, Japan
This paper reports an improved interfacial structure between electrode and electrolyte of Solid Oxide Fuel Cell (SOFC). We employed an imprint process to give fine patterns onto a ceramic electrolyte sheet. The imprint process is a powerful tool to transcribe nano- to micro-patterns on materials. In the present work, a sheet of ceramic compound material was prepared, and micro patterns were given on the sheet. After debinding and sintering, dense ceramic sheet with fine patterns were obtained. We prepared three kinds of electrolyte sheets with different surface patterns using this technique. Application of anode and cathode layers, the three fuel cell samples were assembled to test the cell performance. It was resulted that the finer pattern caused the best performance in the three samples.

RESEARCH ABOUT TOP ELECTRODE IMPROVEMENT OF ZnO NANOWIRES ARRAY NANOGENERATOR

Shaohua Wu, Li Xiao¹,², Yundong Xuan¹,², Zhan Zhao¹, Deyi Kong¹, Lidong Du¹, Zhen Fang¹
¹State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing, China.
²Graduate University of Chinese Academy of Sciences, Beijing, China.
A novel method to fabricate the top electrode of ZnO nanogenerator is introduced in the article. Hydrothermal synthesis is adopted to grow ZnO nanowires array structure. And the sputtering process is employed as a simple fabrication method to form the top electrode. Scanning electron microscope (SEM) analysis has been carried out to identify different layers in nanogenerator. The energy harvesting experiment of the nanogenerator excited by ultrasonic wave has been carried out as well in the research. Experiment results reveal that the maximum output voltage reaches about 0.23V.

FABRICATION OF MEMBRANE-TYPE METAL MOULD WITH MICROSTRUCTURES AND APPLICATION FOR ROLLER IMPRINTING

Yu-Hsiang Tang*, Yu-Hsin Lin, Jr-Jung Yang, and Ming-Hua Shiao
Instrument Technology Research Center, National Applied Research Laboratories, 300, Taiwan
In this paper, we focus on the development of membrane-type metal mould with microstructures for imprinting. This mould has several benefits including reusable, easy replaceable core, and low cost that strongly improves industrial values in microstructure mass production. The membrane-type metal mould with a thickness of 60 μm can be attached to a level mould or a roller mould, and becomes a metal core for the polymer microstructure imprint for mass production of products over large surface area. Photolithography, electroforming, and grinding techniques have been integrated in order
to develop the membrane-typed metal mould in this research. It has been proven that the metal mould of micro pillars could be successfully fabricated. This metal mould was fabricated by precision electroforming technology that Ni-Co alloy was deposited on a photomask mould, and further peeled off to attach onto a level mould. The hardness, stiffness and toughness of the Ni-Co alloy material core structure were sufficient and strong enough for reusable duration. The durability of this membrane-typed metal mould has been greatly enhanced. Furthermore, by applying roller assisted attaching mechanism, the interface between the mould and Ni-Co alloy core became more inseparable and flat. According to the experimental measurement results, the uniformity has been controlled between ± 5 μm. The reproducing accuracy of the polymer microstructures can also be effectively enhanced.

1P1-070

PRINT-TO-PRINT: A FACILE FLEXIBLE MULTI-OBJECT PATTERNING PROCESS USING SUPERHYDROPHOBIC FILMS

Siayan Xing, Siwei Zhao, Tingrui Pan
Department of Biomedical Engineering, University of California, Davis, USA

In this paper, we present a simple versatile printing-based method, referred to as Print-to-Print (P2P), to form multi-object micropatterns for potential biological applications, along with our recent efforts to deliver out-of-room microfabrication solutions to the general public. The P2P method employs only a commercially available solid-phase printer and reusable superhydrophobic films developed by us. The whole process does not involve any thermal or chemical treatment. Moreover, the non-contact nature of droplet transferring and printing steps can be highly advantageous for sensitive biological uses. Using the P2P process, a minimal feature resolution of 229μm has been successfully demonstrated. In addition, this approach has been applied to form biological micropatterning on various substrates as well as multi-object co-patterns on the commonly used surfaces. Finally, the reusability of superhydrophobic substrates has also been illustrated.

1P1-071

INVESTIGATIONS OF SILICON WAFER BONDING USING THIN AL AND SN FILMS FOR HETEROGENEOUS INTEGRATION

Zhiyuan Zhu 1, Shaonan Wang 1, Yichao Xu 1, Guanjiang Wang 1, Yudan Pi 1, Peiquan Wang 1, Yuhui Zhu 1, Xin Sun 1, Min Yu 1, Jing Chen 1, Min Miao 2, Yufeng Jin 1
1National Key Laboratory of Nano/Micro Fabrication Technology, Institute of Microelectronics, Peking University, Beijing, China
2Institute of Information Microsystem, Beijing Information Science & Technology University, Beijing, China

Metallic wafer bonding has emerged as a key technology for microelectronics and MEMS. The Si wafers with Al metallization film on surface are bonded by applying Sn films as intermediate layer, aiming at the application of heterogeneous integration. Averaged shear strength of 99 MPa is realized at bonding temperature as low as 280℃ with bonding time as short as 3 minutes under the bonding pressure of 0.25 MPa. Interface microstructure and fracture surface analysis were carried out to understand the underlying mechanism.

1P1-072

SURFACE TENSION-INDUCED HIGH ASPECT-RATIO PDMS MICROPILLARS WITH CONCAVE AND CONVEX LENS TIPS

Huawei Li, Yiqiang Fan, Ying Yi, Ian G. Foulds
Electromechanical Microsystems & Polymer Integration Research (EMPRe) Group
Computer, Electrical & Mathematical Sciences & Engineering Division (CEMSE)
King Abdullah University of Science and Technology (KAUST), Saudi Arabia

This paper reports a novel method for the fabrication of 3-dimensional (3D) Polydimethylsiloxane (PDMS) micropillars with concave and convex lens tips in a one-step molding process, using a CO2 laser-machined Poly(methyl methacrylate) (PMMA) mold with through holes. The PDMS micropillars are 4 mm high and have an aspect ratio of 25:1. The micropillars are formed by capillary force drawing up PDMS into the through hole mold. The concave and convex lens tips of the PDMS cylindrical micropillars are induced by surface tension and are controllable by changing the surface wetting properties of the through holes in the PMMA mold. This technique eliminates the requirements of expensive and complicated facilities to prepare a 3D mold, and it provides a simple and rapid method to fabricate 3D PDMS micropillars with controllable dimensions and tip shapes.

1P1-073

IN-LINE TESTING OF BLIND TSVs FOR 3D IC INTEGRATION AND M/NEMS PACKAGING

Yichao Xu 1, Guanjiang Wang 1, Xin Sun 1, Ruixu Fang 2, Min Miao 2 1, Yufeng Jin 1
1Peking University Shenzhen Graduate School, Shenzhen, China
2National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Peking University, Beijing, China

An in-line testing procedure of blind TSVs is put forward in this study. Insulation integrity is chosen to determine the eligibility. It is to probe the upper end of two or more neighboring TSVs during the manufacturing right after the blind vias being formed. Finite element method simulation was used to illustrate the testing principle, and experimental test were carried out for validation. During the test, leakage current data between two blind vias is sufficient and strong enough for reusable duration. The durability of this membrane-typed metal mould has been greatly enhanced. Furthermore, by applying roller assisted attaching mechanism, the interface between the mould and Ni-Co alloy core became more inseparable and flat. According to the experimental measurement results, the uniformity has been controlled between ± 5 μm. The reproducing accuracy of the polymer microstructures can also be effectively enhanced.

1P1-074

FABRICATION OF SUB-WAVELENGTH STRUCTURES ON SILICON DIOXIDE

Mao-Jung Huang, Yu-Hsian Tang, Chien-Ying Su and Mung-Hua Shiao
Instrument Technology Research Center, National Applied Research Laboratories, Hsinchu, Taiwan

Sub-wave length structure (SWS) as an effective method to suppress reflection of silicon material for many years [1-2]. Recently, the SWS was also employed in a transparent material, and hence the properties of transmission can be measured [3]. This work we present a process combining nanosphere lithography (NIL) and reactive ion etching (RIE) to fabricate arrayed nanostructure on commercially available slide glass. In addition, we deposited an Au film of 20 nm on the substrate surface to suppress the transmission in the infrared wavelength for application of insulated window.
1P1-075
SN-RICH Au-Sn HERMETIC PACKAGING AT WAFER LEVEL AND ITS APPLICATION IN SPR SENSOR
Xu Mao1, Zhaoyang Fang1, Zhe Zhang1, Jinling Yang1, Zhimei Qi2, and Fuhua Yang3
1Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
2State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing 100083, China
3School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore.

1P1-076
FABRICATION AND MORPHOLOGICAL CONTROL OF ELECTROSPUN ETHYL CELLULOSE NANOFIBERS
Xiang Wang, Guangzi He, Haiyan Liu, Gaofeng Zheng, Daoheng Sun
Department of Mechanical and Electrical Engineering, Xiamen University, China
Ethyl cellulose (EC) fibrous films were fabricated via electrospinning from solutions with various DMF/acetone volume ratios and the hydrophobic properties were investigated. The morphology of electrospun EC films reveals a conversion from beads to uniform nanofibers by decreasing the DMF/acetone ratio. Pure DMF solution leads to bead structures while uniform nanofibers can be obtained from DMF/acetone ratio of 2/3. The fibrous surfaces of electrospun EC films greatly improve their hydrophobicity with the average water contact angles range from 138° to 151°, exceeding that of spin-coating film (59°). The highest contact angle (151°) was found on the bead-on-string films prepared from the solution with DMF/acetone ratio of 4/1. For this hydrophobic capacity, the electrospun EC films would broaden their applications in the fields of coating and encapsulation.

1P1-077
IN-SITU MEASUREMENT OF ION ANGULAR DISTRIBUTION IN BULK TITANIUM DRIE FOR MODELING THE ETCH PROFILE
Jia Hu, Shuwei He, Yiming Zhang, Jing Chen
MEMS Research Center, Institute of Microelectronics, Peking University, China
The bulk titanium deep reactive ion etching (DRIE) enabled high aspect ratio structures and devices are promising for harsh and in vivo environments applications. An etching model is necessary for better profile control to acquire needed performance, in which a correct ion angular distribution (IAD) in chlorine plasma is crucial. In this paper, an overhang SU-8 structure is proposed to experimentally in-situ measure the IAD by analyzing the etching profiles. With these data, a profile evolution model is developed to predict the titanium DRIE process.

1P1-078
FABRICATION AND THERMAL STABILITY CHARACTERIZATION OF RU ELECTRODE USED FOR HIGH POWER CONTACT RF MEMS SWITCH
Hongze Zhang, Zhihong Li
National Key Laboratory of Nano/Micro Fabrication Technology, Peking University, Beijing, China
This paper presents the fabrication and thermal stability of the Ru electrode used for high power Ru/Au contact RF MEMS switch with microspring contact design. Here we develop a new process with bilayer lift-off and strain release layer to get the 3000 Å Ti/Au/Ru electrode with excellent smooth surface with SEM and EDX shows that the electrode has a good thermal stability at 400°C, which is proper for high power handling.

1P1-079
ANNEALING EFFECT ON THE STABILITY OF PLATINUM THIN FILMS COVERED BY SiO2 OR SiNx LAYER
Li Xing1,2, Zhao Hu1, Liang Du2, Shaohua Wu2, Qimin Liu1,2
1State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing, China
2Graduate University of Chinese Academy of Sciences, Beijing, China
This study examined the crystal structure and the surface morphology between Pt and SiO2 or SiNx as a glue layer according to the annealing treatment. The thermal temperature make the surface morphology of the Pt films changed, and the characteristics of Pt thin film resistsors under different annealing temperature also been changed. The resistance of the film will decrease after thermal treatment which the annealing temperature is lower than 480°C, and the resistor will increase sharply after annealing above 500°C. SiO2 or SiNx layers covered on Pt also have an effect on the characteristics of Pt thin films.

1P1-080
SIMULATION OF IMPINGEMENT AND SPREADING OF MICRODROPLET ON NON-HOMOGENEOUS SOLID SURFACE
Chun Yee Lim, Yee Cheong Lam
School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore.

This paper presents a numerical study on the impingement and spreading of a micro-sized droplet on a nonhomogeneous solid surface. Based on the phase field method, the numerical model was implemented with finite element method (FEM). Dynamic contact angle, which is dependent on the droplet contact line velocity, was applied at the contact surface based on Blake’s model and hydrodynamic model. A novel scheme to specify the contact line velocity based on the phasefield function gradient at the interfacial region has been implemented. Numerical results show that a high wettability
The difference between two surfaces confines the spreading of an impinging micro-sized droplet. Surface wettability patterning can be applied to control the deposition and spreading of a jetted droplet to produce accurate micro-sized features in electronic circuits.

1P1-081

SURFACE PROPERTY STUDY OF DIFFERENT PATTERNING SAPPHIRE STRUCTURES BY ICP-RIE

Chun-Ming Chang1,7, Ming-Hua Shiao1, Dongya Zhang1, Hao-Jung Huang1, Chin-Tien Yang2, Wen-Jeng Hsueh2

1Department of Engineering Science and Ocean Engineering, National Taiwan University, Taipei, Taiwan
2Instrument Technology Research Center, National Applied Research Laboratories, Hsinchu, Taiwan

In this paper, we demonstrate and compare the formation of ordered etching masks for submicron patterned sapphire through use of the nanosphere lithography and nanoinprint lithography methods. Both NSL and NIL were applied to produce the submicron honeycomb network and cone protrusion array structure on the sapphire surface as etching masks. The sequent ICP-RIE technique was applied to further etch the sapphire under the mask. Two types of submicron pattern were obtained on the substrate surface after the etching processes were completed. One type of substrate was the submicron hole array structure and another type was the cone array structure. The working pressure had a considerable effect on the shape geometry and etching rate. The contact angles of the untreated substrate and two differing patterned sapphire substrates were measured and compared. From the contact angle measurement results, we concluded that the protruded contact area dominated the hydrophobic or hydrophilic property.

1P1-082

FUNCTIONAL SU-8-8 PET COMPOSITE MICROCHIP INCLUDING AU MICRODOT ARRAY FABRICATED BY LOW TEMPERATURE POLYMER BONDING

Major in Nano-Science and Nano-Engineering, Waseda University, Tokyo, Japan

An deposited SU-8 microdots comprised SU-8-8 PET microchip using low temperature polymer bonding technology is developed. A fine microdot array (1μm×1μm×0.5μm dots with 2μm pitch in area of 50μm×50μm) is fabricated by electron beam lithography (EBL) using SU-8 as a negative tone resist. A microchannel structure is formed with UV patterned SU-8 on a glass substrate. The SU-8 structure is sealed with a PET film by low temperature silane coupling bonding (140°C, 1.5MPa, 5min). The proposed microchip is fabricated successfully without leakage and is applicable as a microchip electrophoresis.

1P1-083

FABRICATION OF SILICON PIEZORESISTIVE PRESSURE SENSOR USING A RELIABLE WET ETCHING PROCESS

Huiming Xu1,2, Hong Zhang1,2, Zhiqiang Deng1,2, Haisheng Sun1,2, Yuxi Yu1,2

1School of Physical and Mechanical & Electrical Engineering, Xiamen University, Xiamen, China
2Fujian Key Laboratory of Advanced Materials, College of Materials, Xiamen University, Xiamen, China

Silicon-based piezoresistive pressure sensors are generally fabricated as a piezo-sensitive diaphragm by using MEMS technology and SOI wafer. Lots of innovations and improvements have been made for silicon pressure sensor to increase its performance and reliability. It is found that the quality of Si-Si bonding will directly affect the performing of SOI substrate removing processes. The main problem is that the etching liquid infiltrate into bonding interface from the defect position of bonding wafer edge, resulting in the damage and corrosion of bonding wafer. To solve this problem, the paper presents an etching fixture design for effectively protecting the bonding wafer edge. Experimentally, a SOI-Si bonding wafer with poor quality in bonding edge was used to fabricate the piezoresistive pressure sensor by using the etching fixture. The experimental results show the use of etching fixture did not damage the bonding wafer and made a nice removal of SOI substrate. The fabricated pressure sensor wafers are also presented.

1P1-084

A NEW EXPERIMENTAL METHODOLOGY USING POINT DEFLECTION TO QUANTIFY RESIDUAL STRESS OF THIN POLYMER MATERIALS IN MEMS DEVICES

Sofiane Soulimane, Arnaud Pouydebasque*, Sébastien Bolis, Fabrice Jacquet, Claudine Bridoux, Florian Dupont, Christophe Poulain, Stéphane Moreau, Stephane Fanget

CEA, LETI, MINATEC Campus, F-38054 Grenoble, France

In this study, a novel methodology to measure the stiffness by point deflection of a flexible polymer layer suspended on liquid using a nano-indentor is presented. The measurement allows us to extract residual stress values of the polymer material using a simple analytical model. With this method, very low stress values can be obtained, of the order of 1 MPa, with good repeatability. This method allows accurate mechanical behavior prediction and dimensioning of flexible membrane materials used in Microsystems devices.

1P1-085

A PDMS/METAL-FILM PHOTO-MASK FOR LARGE-AREA CONTACT PHOTOLITHOGRAPHY AT SUB-MICROMETER SCALE

Yi-Ta Hsieh1, Cho-Wei Chung2, Yung-Chun Lee1,2, Fei-Bin Hsiao1

1Institution of Nanotechnology and Microsystems Engineering, National Cheng Kung University, Tainan, Taiwan
2Mechanical Engineering, National Cheng Kung University, Tainan, Taiwan

This paper presents a new type of soft PDMS photo-mask applying conventional photolithography processes for fabricate sub-micro scale patterns with large area. This new type of soft PDMS photo-mask is made by soft PDMS material and with the embedded metal layer as an opaque layer. The incident light will selectively blocked by the opaque material, and others are guided by the convex PDMS structures to expose the PR layer. Due to its soft and
EFFECT OF PHOSPHORUS DOPING ON THE PERFORMANCE OF Au/Si INTER-DIFFUSION

Xian Huang1,2, Fang Yang1, Danqi Zhao1, Jun He1, Xuejiao Fan1, Wei Wang1, Dacheng Zhang2
1Shenzhen Graduate school, Peking University, Shenzhen, China
2National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Peking University, Beijing, China

In this paper, both phosphorus doped and undoped Au/Si contact structures were investigated by scanning electron microscope (SEM) and Rutherford backscattering spectrometry (RBS) analysis after annealing at 350°C for 30 min. The effect of phosphorus doping on the performance of Au/Si inter-diffusion is discussed in this paper. The SEM image of the undoped Au/Si contact structure revealed that inverted pyramid-shaped diffusion outline formed at the contact interface after annealing due to the non-uniformity and anisotropy of Au/Si inter-diffusion. However, when the crystal Si substrate was heavily phosphorus doped by ion implantation, the inverted pyramid-shaped outline was eliminated and a smooth contact interface was obtained. In addition, RBS analysis showed that the average diffusion depths in both cases were nearly the same, which indicates the phosphorus doping can alter the anisotropy of Au/Si interdiffusion but has no significant influence on the Au/Si interdiffusion rate.

RESEARCH ON PROGRAMMABLE CAPILLARY-FORCE SELF-ASSEMBLY NANOFABRICATION

Shuhua Wei, Jing Zhang
Department of Microelectronics, College of Information Engineering, North China University of Technology, China

The capillary-force which is an extremely important force in the small objects is considered to be one of the most effective driving forces for the micro-nanoscale self-assembly. However, the process of capillary-force self-assembly is usually uncontrollable, which has prevented it from being used in the formation of specific nanoscale devices. In order to explore the fundamentals of capillary-force self-assembly, we analyzed the impact factors of nanostructures suffered by capillary-force and gave a typical general physical model. Then, we studied the complex structures fabrication method based on capillary-force self-assembly, and analyzed its characteristics and limitations. Finally, we proposed a new concept of programmable capillary-force self-assembly to achieve a reliable control of capillary-force, and thus form a new nanofabrication method.

LASER ADDITIVE MANUFACTURING TECHNOLOGY IN TITANIUM 64 IMPLANT OF MICROSTRUCTURE FABRICATION AND ANALYSIS

ITRI South, Industrial Technology Research Institute, Liuji District, Taichung City 433, Taiwan

Laser additive manufacturing technology is very attractive for industry applications due to the characteristics of rapid manufacture, flexible parameters select, customize, and complex 3D object fabrication. In this article, an EOS M-type direct metal laser sintering (DMLS) system was used to manufacture customized hip implant with an IPG fiber laser. The part building process takes place inside an enclosed chamber filled with argon gas to minimize oxidation powdered material. We are successful design and producing an implant of imitation bone microstructure in titanium alloy. From the SEM analysis image, an approximately 100% dense surface has been observed. The mainly composition of selective laser additive manufacturing product are acicular structure of alpha-phase titanium. X-ray diffraction patterns also are observed the alpha-phase and betaphase mixture. This customized hip implant is used for clinical application for replacement the golden retriever’s femoral head, and it get good results. Imitation bone structure can promote the biocompatible of titanium material and bone.

THREE DIMENSIONAL MICRO-MECHANICAL AND MICRO-OPTICAL DEVICES FABRICATED BY HOLOGRAPHIC TWO-PHOTON LITHOGRAPHY

Liang Yang1, Jiwen Li1, Jinting Wang2, Chenchu Zhang1, Yankei Hu1, Yahui Su1, Wenhao Huang1, Jian Chu1
1Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, China
2School of Electrical Engineering and Automation, Anhui University, Hefei, China

Holographic two-photon lithography (HTPL) is a high speed parallel laser fabrication technique inside photosensitive materials based on spatial light modulation and two-photon polymerization. In this paper, a femtosecond HTPL system was built and femtosecond laser beam was modulated to multi beams with spatial light modulator (SLM). The quantity and the distribution of the multi foci can be well adjusted according to our design. On this basis, parallel fabrication of high precision micro-mechanical and micro-optical devices, which has promising application in MEMS, micro-optics, micro-sensors and so on, was demonstrated. This technique will contribute to the industrialization of femtosecond two photon polymerization (FTPP) in the foreseeable future.

PDMS-CYTOP HYBRID STRUCTURE MICROWELL ARRAY CHIP FOR TOTAL INTERNAL REFLECTION FLUORESCENCE MICROSCOPY

A. Nakahara, Y. Shirasaki, J. Mizuno, T. Sekiguchi, O. Ohtara and S. Shoji
Major in Nano-Science and Nano-Engineering, Waseda University, Japan

A microwell array device with a hybrid structure of amorphous perfluoropolymer, CYTOPM, and polydimethylsiloxane (PDMS) which is specialized in total internal reflection fluorescence (TIRF) microscopy was developed. Since the CYTOP layer, whose refractive index is as same as that of water, is
sandwiched between PDMS and glass substrate, leakage of incident light is avoided. PDMS layer upon the CYTOP enables high aspect ratio structures and easy integration of microfluidic components. Since direct bonding of CYTOP and PDMS is difficult to achieve, a chemical bonding method using aminosilane coupling reagent and 3-Glycidoxypropyltriethoxysilane was applied. The bond strength was about 0.74 MPa. A 24 × 50 microwell array was fabricated and their optical properties was evaluated. Measured TIRF microscopy results shows no interfere with incident light under the conventionally used conditions.

1P1-091 FABRICATION AND ANALYSIS OF THREE-DIMENSIONAL OBJECT USING LAYERWISE MANUFACTURING TECHNOLOGY ... No.361

ITRI South, Industrial Technology Research Institute, Lilia District, Tainan City 744, Taiwan

Layerwise manufacturing technology exhibits a high potential in the field of rapid manufacturing, due to its capability to directly build up three-dimensional metallic components. In this research, we established a layerwise manufacturing platform having YLR 500 AC fiber laser and an enclosed chamber vacuumed to minimize oxidation powdered material. From relationship of laser power and scanning speed can observe the variation of weld width. It assists to find the suitable laser parameters for laser additive manufacturing at blue region. The morphology of titanium specimen was analyzed by SEM image examined, and some porous structure formed due to the surface tension and oxide effect. The result of mechanical strength of 366.16 MPa was proved to be smaller than common bulk material. The X-ray diffraction patterns of titanium specimen has higher crystallization from R(110), R(101) and R(200). We have successfully fabrication three-dimensional object and analysis its material properties.

1P1-092 FABRICATION OF SILICON NANOSTRUCTURES VIA SILVER CATALYZED CHEMICAL WET ETCHING ……………………………………………… No.368

Bingfei Dou, Rui Jia, Chen Chen, Hao Feng Li, Yun Sun, Xinyu Liu, Tianchun Ye
Institute of Microelectronics, Chinese Academy of Sciences, Beijing, China

Silicon nanostructures have been synthesized by silver catalyzed wet etching methods. A one-step method was used to produce nanowires array, and a two-step methods were used to produce nanoholes array. For the one-step method, silicon wafers were etched in hydrofluoric acid/silver salt mixture solution. While for the two-step method, firstly silver nanoparticles were formed through rapid thermal annealing of silver thin films. The temperature, duration of annealing and initial thickness of the silver film jointly determined the distribution and diameter of silver particles. In the next step, silicon nanostructures were created using silver catalyzed etching in hydrofluoric acid/oxidizing agent solution. The experiment confirmed that the final sizes of the nanostructures corresponded to the diameters of the silver particles, and the length of nanostructure correlated with the Ag catalyzing etching duration.

1P1-093 DISCUSSION ON THE LAPPING AND POLISHING PROCESS OF 4H-SIC WAFER ……………………………………………………………………… No.384

Wei Cheng, Yuqang Yin, Yipan Li, Haoer Zhang, Shiming Zhang, Lingyun Wang, Daoheng Sun
Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen, Fujian, China

In order to achieve a high quality silicon carbide (SiC) film, the lapping and polishing process scheme was introduced in this paper. The ductile iron was utilized as lapping disc material, which can quickly thin the SiC wafer to the film of uniform thickness. After three-step lapping process, the thickness of the SiC wafer was reduced to 35 ± 4μm. In the process of polishing, a rough polishing and a fine polishing were studied by selecting suitable polishing liquid, polishing pad and parameters. The results show that the lapping and polishing procedure can realize large area and high quality SiC films: the film thickness, 30 ± 2μm and the surface roughness RMS, 0.69μm.

1P1-094 IMPROVED ELECTRICAL CONDUCTIVITY OF PANI/PEO POLYMER VIA ELECTROSPINNING AND ITS APPLICATION AS NH3 GAS SENSOR ………………………………………………………………………………… No.405

ITRI South, Industrial Technology Research Institute, Lilia District, Tainan City 744, Taiwan

Stiff Li 1,2, Gaofeng Zhang 1, Xiang Wang 1, Yong Chen 1, Dezhhi Wu 1, Daoheng Sun 1
1School of Physics and Mechanical & Electrical Engineering, Xiamen University, China
2Ecole Normale Superieure, CNRS-ENS-UPMC 8640, France

Higher conductivity of electrospun nanofiber mat was observed by four-terminal resistance measurement compared to polyaniline (PANI)/Polyethylene oxide (PEO) film based on the same doping method. In order to improve conductivity of the blended polymer and guarantee its spinability in the meanwhile, the concentration of PEO with great molecular weight of 5,000,000 could be decreased to 0.1wt%. The influences of voltage, electrode-to-collector distance and flow rate as well as environmental humidity in electrospinning process on the nanofiber morphology were respectively discussed in detail. PANI/PEO nanofiber mat can be used repeatedly for sensing NH3 gas. The response time is as short as about 6s and it can recover in 6 minutes when exposed to air.

1P1-095 SUPERHYDROPHOBIC SURFACE OBTAINED USING PYRAMIDAL PTFE FILM FABRICATED ON RIE ETCHED SILICON ……………………………………………………………………………………………………… No.408

S.S. Li 1,2, Gaofeng Zhang 1, Xiang Wang 1, Yong Chen 1, Dezhhi Wu 1, Daoheng Sun 1
1Department of Electronics Engineering, Catholic University of Daegu, Gyeongbuk, Korea
2School of Electronics Engineering, Kyungpook National University, Daegu, Korea
3School of Chemistry, Catholic University of Daegu, Gyeongbuk, Korea
4Department of Life Chemistry, Catholic University of Daegu, Gyeongbuk, Korea

We have developed a surface texturing process using a polytetrafluoroethylene coating with a pyramidal structure for obtaining superhydrophobic surfaces. In order to investigate the hydrophobic properties of the surface, we measured the contact angle and roughness values. The calculated roughness
factor and root mean square roughness ranged from 2.47 to 2.6 and from 0.25 μm to 0.4 μm, respectively. The contact angle of a water droplet on the surface was greater than 150°; moreover, this angle was maintained for over 7 weeks. This observation implies that extremely low wettability is achievable on superhydrophobic surfaces.

1P1-096

FABRICATION AND CHARACTERIZATION OF MICRO-STRUCTURED SUPERCAPACITOR WITH NICKEL ON POROUS COPPER

J. L. Yin, Y. J. Lee, J. Y. Park

Department of Electronic Engineering, Kwangwoon University, Korea

This paper reports the fabrication method and characteristics of a three-dimensional micro interdigital structured supercapacitor. The proposed capacitor was fabricated by using two porous CuNi electrodes with ultra-high surface area. The porous electrodes were formed by using a negative photoresist KMPR for high aspect ratio structure and electroplating technique. The electrochemical performances of the fabricated supercapacitor were examined in 1M KOH solution by using the cyclic voltammetric (CV), chronopotentiometric (CP), and electrochemical impedance spectroscopic (EIS) techniques. It demonstrated the pseudocapacitive and stable charged-discharge behavior. A high specific capacitance of 201 mF/cm², a power density of 5.06 mW/cm², and low series resistance of 2.5Ω were obtained.

1P1-097

A TRANSFER TECHNIQUE OF STRESS SENSORS FOR VERSATILE APPLICATIONS

C. Dou, H. Yang, Y. Wu, X. Li, Y. Wang

State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China.

This paper reports a transfer process of silicon stress and Pt temperature sensors for versatile requirements. Based on a 3μm thick BCB adhesive layer, a 1.6 mm × 1.6 mm donor chip with stress and temperature sensors, which are fabricated on the silicon-on-insulator wafer using standard MEMS process, is bonded on a target wafer. After the bottom silicon layer and the insulator SiO₂ layer of the donor chip are etched by XeF₂ gas and RIE technique, only 0.2μm thick top sensor layer and 0.7μm thick aluminum layer used as conducting wires and pads are transferred onto the target wafer for the measurement of its in-plane stresses. Through the transfer process of stress and temperature sensors, the in-plane stresses of the target wafer caused by the fabrication processes or the package processes can be measured.

1P1-098

DEVELOPING RNA APTAMER NANOPARTICLES AS DRUG CANDIDATES TARGETING GLUTAMATE ION CHANNELS

Zhen Huang, Li Niu

Department of Chemistry, the RNA Institute, and the Center for Neuroscience Research, State University of New York (SUNY) at Albany, Albany, New York 12222, USA

In finding new therapy for some neurological diseases, such as epilepsy, stroke and amyotrophic lateral sclerosis (ALS), one potential therapeutic strategy is to develop inhibitors for the α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors, a subtype of the glutamate ion channel receptors. This is because excessive activity of AMPA receptors leads to abnormal calcium influx into neurons, which in turn leads to cell death. In developing AMPA receptor inhibitors that are both potent and water soluble, we have used systematic evolution of ligands by exponential enrichment (SELEX) and successfully identified three classes of aptamers with nanomolar potency. To turn them into potentially useful drugs, we are loading these RNA aptamer molecules onto special gold nanoparticles (AuNPs) to facilitate aptamer delivery, its absorption and distribution in vivo.

1P1-099

MICRO-CHAIN MODEL OF MAGNETORHEOLOGICAL FLUIDS BETWEEN TWO PARALLEL DISKS

Jin Huang, Yan Yang

College of Mechanical Engineering, Chongqing University of Technology, Chongqing, China

The paper considering the surface roughness of mechanical seal ring, thermal viscosity effect and gas slippage flow effect, the modified expansion average Reynolds equation which is in compressible fluid conditions presented based on the theories of both gas polytrophic process and gas lubrication so as to study the gas film viscosity and seal performance of the S-DGS. The obtained results show along with the increasing of rotational speeds, the surface roughness can add gas viscosity, increase the bearing capacity and stability, reduce leakage quantity; in contrast, slippage flow effect weaken the gas viscosity and recedes the bearing capacity and stability, increasing the leakage; the influence of surface roughness and gas slippage effect on gas viscosity and seal performance reduced as the film thickness increased, the gas viscosity and seal performance with film thickness would not be affected by micro-scale effects when film thickness is greater than 2μm.
2P1-001
DESIGN AND FABRICATION OF VARIABLE MICROPATTERN FOR FLEXIBLE BACKLIGHT
1Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
2National Science Council Core Facilities Laboratory for Nano-Science and Nano-Technology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan

The effect of variable micropattern for an advanced compound optical film was investigated. This compound optical film was made by using Lithographic galvanoforming abforming (LIGA)-like process. The multi-step electroforming with micro-void embedded Poly dimethylsiloxane (PDMS) was developed. This work presents many innovative processes, such as the homemade gray scale mask to fabricate variable size array; the multi-step electroforming process to fabricate various fill-factor from high to low and from low to high; and the embedded micro-void to fabricate optical film without substrate that avoids total internal reflection. FRID is a commercial software for optical simulation and design. The diffusion of the micro-void array and light guide of the variable size micro lens array were discussed. Experimental results show that the variable size micro lens array with embedded micro-void can be packaged flexible on side light emitting diode (LED) to improve its lighting uniformity and the light extraction efficiency.

2P1-002
VIBRATION DAMPING PROPERTIES OF GRADIENT INTERPENETRATING POLYMER NETWORKS COMPOSED OF POLYURETHANE AND VINYL ESTER RESIN
Department of Chemistry, Harbin Institute of Technology, China

Gradient interpenetrating polymer networks (IPNs) with the component sequences of polyurethane(PU) and vinyl ester resin(VER) of 60/40~70/30~80/20 and 70/30~80/20~90/10, cured at room temperature, were synthesized. The effects of time intervals and component sequences of gradient IPNs on their damping properties were studied by Dynamic Mechanical Analyzer (DMA). The maximum damping loss factor (tanδ) and the peak times of tanδ-ω curves of different gradient IPNs were calculated and compared quantitatively. The extensional gradient IPNs with prepared at steel sheet with thickness of 1mm and the vibration damping properties were measured by the cantilever method with steel sheet as substrate and the gradient IPNs as coatings. The effects of the thickness ratio of the IPNs coatings and the substrate, the component sequences of the gradient IPNs on the structural loss factor (δ) of the extensional damping structure at different resonance frequencies were studied.

2P1-003
MECHANICAL STABILITY ANALYSIS OF ORGANIC THIN FILM TRANSISTORS CONSIDERING INTERFACIAL DELAMINATION
Zhoulong Xu, Bo Tao, Liu Zunxu
State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Technology, Huazhong University of Science and Technology, China

It is shown that the organic thin film transistor (OTFT) device’s failure during bending test is related with the interfacial delamination of the top-electrode in some recent studies. However, the mechanism of the OTFT interfacial crack occurrence is still not clear. Aiming at this problem, the OTFT interfacial crack of the top-electrodes in pure bending is studied and discussed using the finite element analysis, based on VCCT with dummy nodes in this paper. It is found that the edges of top-electrode, especially the channel side edges, have the maximal possibility to produce interfacial crack based on the peel and shear stress distributions in multilayer structure. The effect factors, such as the top-electrode thickness, material properties and substrate thickness, have also been considered in the discussion. It is shown that the thinner and tender source/drain electrode as well as the thinner substrate will help to improving the OTFT reliability.

2P1-004
MICROMACHINED INDUCTOR INTEGRATED WITH A PATTERNED SOFT MAGNETIC THIN FILM
Yu-Che Huang1, Ben-Hwa Jang1, and Wellean Fang1,2
1Department of Power Mechanical Engineering
2Institute of NanoEngineering and Microsystems, National Tsing Hua University, Hsinchu, Taiwan

This study demonstrates a novel design and fabrication process to realize micromachined inductor integrated with the patterned soft magnetic film (CoFeB). In order to enhance inductor’s inducance and find out the major design parameters, three types of the inductor integrated with the patterned soft magnetic film was designed, fabricated and tested. The spiral type inductor was fabricated by copper electroplating. This novel approach to integrate inductor with soft magnetic thin film by depositing the nitride film dielectric layer for increasing the inducance. As a result, the influence of the soft magnetic film contributes 10% increase in the inducance on "magnetic film aligned" inductor at 2GHz.

2P1-005
DRUG-LOADED CUBIC MICRO-CHAMBER MADE OF A BIODEGRADABLE POLYMER FOR BACTERIA-BASED DRUG DELIVERY
Hyung Jung Yoo, Sangmin Lee, Jae Hyun Ahn and Dong-il "Dan" Cho

This work presents many innovative processes, such as the homemade gray scale mask to fabricate variable size array; the multi-step electroforming process to fabricate various fill-factor from high to low and from low to high; and the embedded micro-void to fabricate optical film without substrate that avoids total internal reflection. FRID is a commercial software for optical simulation and design. The diffusion of the micro-void array and light guide of the variable size micro lens array were discussed. Experimental results show that the variable size micro lens array with embedded micro-void can be packaged flexible on side light emitting diode (LED) to improve its lighting uniformity and the light extraction efficiency.
In this paper, a novel method of fabricating a drug-loaded, cubic micro-chamber made of biodegradable polymer for bacteria-based drug delivery is presented. A biodegradable polymer, poly-caprolactone (PCL), is used to fabricate the micro-structure. The biocompatibility of PCL is approved by the Food and Drug Administration in U.S. for use in humans. To fabricate the drug-loaded cubic micro-chamber, laminated PCL films are prepared, and a drug is encapsulated between the films using the inkjet printing method. Generally, PCL cannot be micromachined by a conventional photolithography technique. Therefore, an x-ray lithography process is developed to fabricate the cubic structure. The fabrication results indicate that the proposed method is excellent for microfabricating drug-loaded cubic micro-chambers made of the biodegradable PCL for bacteria-based drug delivery.

2P1-006
A NEW PZT MICROPUMP FABRICATED FOR CONVEYING FLUIDS .. No.516
Xiao-Xiao Yan, Jing-Quan Liu, Bo Yang, Chun-Sheng Yang
National Key Laboratory of Science and Technology on Nano/Micro Fabrication, Shanghai Jiao Tong University, Shanghai, China
In this paper, we designed and fabricated a new PZT micropump that could pump into and pump out fluids. This pump is composed of two parts: one chamber and two channels. Its mass and size are 1 g and 10×10×1 mm respectively. It can control tiny fluid movement per minutes. This device can connect hollow microneedles and be employed to deliver drugs. It also can be used as a micro-flow controller.

2P1-007
SF, PLASMA ETCHING AND PROFILE EVOLUTION OF SILICON IN MICROPLASMA REACTOR No.521
Wang Hai 1, Li Han 1, Zhaohua Xuan 1,2, Wang Zhan 1, Wen Li 1
1School of Mechanical and Automotive Engineering, Anhui Polytechnic University, China
2Anhui Key Laboratory of Advanced Numerical Control & Servo Technology, China
This paper presents the study of silicon wafer modification by two-beam laser interference. In the work, two-beam laser interference was used to pattern silicon substrates. The role of multiple laser pulses was also investigated. The laser fluence and number of pulses have to be properly selected for the fabrication of gratings using laser interference.

2P1-008
BILAYER WIRE-GRID POLARIZERS FOR DUV TO IR FABRICATED USING EUV INTERFERENCE AND NANOMPRINT LITHOGRAPHY ... No.532
Li Wang 1, Helmut Schöffl 1, Per Magnus Kristiansen 2, Konstantins Jelinsnovs 2, Harun H. Selikh 1, Jens Gebrechel 1 and Yasir Ekmci 1
1 Laboratory for Micro- and Nanotechnology, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
2 Institute of Polymer Nanotechnology, University of Applied Sciences and Arts FHNW, 5210, Windisch, Switzerland
This paper presents the design of a bilayer metallic wire-grid polarizer (WGP) optimized for operation in the deep-ultraviolet (DUV) region, and their high-throughput fabrication of over large areas by nanoinprint lithography (NIL). The master imprint stamps were fabricated using our newly developed scanning exposure strategy with extreme ultraviolet interference lithography (EUV-IL). Optical measurements show that the fabricated bi-layer polarizer covers a broad spectral range, starting from wavelength of 280 nm. TM transmission of 50%, and an extinction ratio of 20 dB (102) were realized.

2P1-009
SILICON WAFER MODIFICATION BY LASER INTERFERENCE .. No.543
L. Zhao 1, Z. Wang 1, D. Wang 1, Z. Zhang 1, Y. Yu 1, Z. Weng 1, C. Maple 1, D. Li 1 and Y. Yue 1
1 Laboratory for Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing, China
2 JRC3CN & CMC Centres, Changchun University of Science and Technology, China
This paper presents the study of silicon wafer modification by two-beam laser interference. In the work, two-beam laser interference was used to pattern single-crystal silicon wafers to fabricate the gratings, and different laser fluences and pulses were applied to the process in the air. The results were obtained from single laser pulse exposures with the laser fluences of 637 mJ/cm2, 780 mJ/cm2 and 1280 mJ/cm2. The role of multiple laser pulses was also investigated. In the experiment, the laser wavelength was 1064 nm, the pulse duration 7-9 ns and the repetition rate 10 Hz. The results indicate that the laser fluence and number of pulses have to be properly selected for the fabrication of gratings using laser interference.

2P1-010
AN ELECTROCHEMICAL MICROSENSOR BASED ON MOLYBDOPHOSPHATE COMPLEX FOR FAST DETERMINATION OF TOTAL PHOSPHORUS IN WATER .. No.102
Yin Bai 1,2, Jianhua Tong 1, Chao Bui 1, Shan Hong Xia 1
1 State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing, China
2 University of Chinese Academy of Sciences, Beijing, China
This work mainly describes an electrochemical microsensor based on the reduction of molybdophosphate complex for fast determination of total phosphorus (TP) in water. Compared with the traditional methods for phosphate detection reported previously that used bulk electrodes, this microsensor responds faster, and can be applied to TP detection rather than merely phosphate. Calibration of phosphate has been performed with standard solutions prepared with K2HPO4 and pH adjusted to 1.0. The limit of detection (LOD) is 0.66 μmol/L and linear range is 1~500 μmol/L. The sensitivity is -0.657 nA per μmol/L (R²=0.994). Detection of TP was also carried out in digested TP standard solutions, and the results were consistent with the nominal value of phosphate concentration.
DEVELOPMENT OF A PIEZOELECTRIC POLYVINYLIDENE FLUORIDE POLYMER-BASED SENSOR PATCH FOR SIMULTANEOUS HEARTBEAT AND RESPIRATION MONITORING ..No.105

Yi-Yuan Chiu1, Wan-Ying Lin1, Hsin-Yao Wang2, Song-Bin Huang1, Min-Hsien Wu1
1Graduate Institute of Biochemical and Biomedical Engineering, Chang Gung University, Taoyuan, Taiwan
2School of Medicine, Chang Gung University, Taoyuan, Taiwan

This study reports a piezoelectric polyvinylidene fluoride (PVDF) polymer-based sensor patch for simultaneous heartbeat and respiration detections. The principle is based on the piezoelectric sensing mechanism to detect the pulsatile vibrations, and periodic deformations on the chest wall of human body during heartbeats and respirations, respectively. In this study, the sensor patch with a structurally curved PVDF film was designed, and fabricated. The role of the curved structure designed to enhance detection signals, and the capability of the sensor to faithfully detect the heartbeats and respirations were experimentally evaluated. Results revealed that the sensor was proved to be able to generate the heartbeat and respiration signals which were in concordance with those based on a commercial electrocardiogram (ECG), and respiratory effort transducer, respectively. As a whole, this study has developed a PVDF-based sensor patch which was capable of monitoring the heartbeats and respirations with high fidelity. Other distinctive features include its small size, light weight, ease of use, low cost, and portability. All these make it a promising sensing device to monitor heartbeats and respirations either in medical centers, or home care units.

HIGH PERFORMANCE OXYGEN SENSOR UTILIZING ULTRAVIOLET IRRADIATION ASSISTED ZnO NANORODS UNDER LOW OPERATION TEMPERATURE ..No.114

Chen-Shiun Chou, Yung-Chen Wu, and Che-Hsin Lin
Department of Mechanical and Electro-mechanical Engineering, National Sun Yat-sen University, Taiwan

This paper presents a novel ultraviolet (UV) irradiation assisted nanostructured ZnO film for high performance oxygen sensing under a low working temperature. The UV irradiation greatly increases the number of the excited electrons to attract the high electron negativity molecule of oxygen. The response for detecting the oxidation gases can be achieved without using the high catalytic temperature. Nanorod ZnO structures with high exposing area are synthesized on a glass substrate with interdigital sensing electrodes utilizing the developed two-stage sol-gel and hydrothermal processes. An 80 mW LED with the emission wavelength of 370 nm is then used to enhance the sensing performance of the nanostructured ZnO film. Results indicate that the sensing performance of the nano ZnO oxygen sensor is greatly improved. The oxygen sensor can work at a low temperature of 50°C with the assist of UV exposure, which is much lower than the working temperature of typical solid state metal oxide sensors of around 350°C. The response of the UV-assisted ZnO film shows 4.66 times larger than the same film without UV exposure. The method developed in the present study provides a simple yet high performance method for oxygen sensing under low operation temperature.

A MICRO ELECTROCHEMICAL SENSOR WITH POROUS COPPER CLUSTERS FOR TOTAL NITROGEN DETERMINATION IN FRESHWATERS ...No.115

Yang Li1,2, Jizhou Sun1, Chao Bani3, Jianhua Tong1 and Shanhong Xia
1Graduate University of Chinese Academy of Sciences, China
2State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences

A micro electrochemical sensor has been developed for total nitrogen (TN) determination in freshwaters. After the digestion process of water samples, nitrate was detected with the microsensor modified by porous copper-clusters and the concentration of TN was calculated by a portable electrochemical system. As the electrocatalytic material, copper was electro-deposited onto the working-electrode of the microsensor by cyclic voltammetry (CV) method and square-wave pulsed cathodic current (PC) method. It was found that copper layer fabricated by PC method was open porous and performed higher sensitivity in nitrate detection than that fabricated by CV method. Calibration in digested samples showed that microsensors modified by PC method had sensitivity of 7.3104 μA/mgL⁻¹ and limit of detection (LOD) of 0.1 mg/L for TN determination. Concentrations of TN in 7 samples from lakes and rivers were detected using the portable electrochemical system. The results were in agreement with the data obtained by standard TN measurement method.

SOL-GEL FIBER-OPTIC ABSORBANCE SENSOR FOR GROUNDWATER CONTAMINANTSNo.119

O'nama Slaughter and Yi Xin
Department of Computer Science & Electrical Engineering, University of Maryland Baltimore, Baltimore, Maryland, USA

An evanescent wave fiber optic sensor for the detection of groundwater contaminants was developed. A 0.25 μm fiber core, 15 mm in length, was chemically etched and coated with 20 μm porous silica medium using sol-gel dip-coating method. This lower-refractive index medium causes the light beam to be transmitted by total reflection and the resulting evanescent wave produces a net flow of energy across the reflecting surface in the surrounding medium where it interacts with the surrounding environment. The power intensity of the solgel modified fiber is measured in the 1540 to 1600 nm spectral range. Various amounts of pure hexane and ethanol were used to examine the response of the sensor. A remarkable influence of the absorption of the evanescent waves in the sol-gel modified fiber for hexane and ethanol was observed.

MEASUREMENT OF INTERNAL TEMPERATURE, FLOW AND PRESSURE IN MICRO-METHANOL-REFORMER USING MULTIFUNCTION MICRO-SENSORS ...No.123

Chi-Yuan Lee, Chia-Chieh Shen, Yu-Ming Chang, Fan-Hsuan Liu
Department of Mechanical Engineering, Yuan Ze Fuel Cell Center, Yuan Ze University, Taoyuan, Taiwan

Methanol has many advantages, such as safe for storage and transportation and low reforming temperature. Methanol can be used to provide hydrogen for fuel cell. In this research, the multifunction micro-sensors are integrated using the micro-electro-mechanical systems (MEMS) technology for the in-situ monitoring of temperature, flow and pressure within micro reformer. The multifunction micro-sensors are embedded inside the micro reformer successfully and the calibration curves of micro temperature, flow and pressure sensors are finished. In the future, the further temperature, flow and pressure data obtained demonstrate that operation occurred in the micro reformer.
2P1-016 SIMULATION AND DESIGN OF MICRO PRESSURE SENSORS APPLIED TO MEASURE THE INTRACRANIAL PRESSURE ... No.128
Pang Bo, Zhang Zhaohu, Ren Tian-Ling
Institute of Microelectronics, Tsinghua University, China
This paper reports a micrometer level pressure sensor to measure the intracranial pressure (ICP). The sensor is based on the piezoresistive effect. The piezoresistive pressure sensor is simulated and designed by using nonlinear programming Optimizing and FEA tools. The sensor is fabricated by MEMS process. From tests, the sensor samples performances match up the design.

2P1-017 MECHANICAL CHARACTERIZATION OF NANOWIRES BY PLANAR VIBRATION SENSOR No.129
L. Zhang, J. Lu, H. Takagi, and R. Maeda
Research Center for Ubiquitous MEMS and Micro Engineering (UMEME)
National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
Nanowires have attracted considerable interest as the nanoscale interconnects and as the moving elements of both electronic and electromechanical devices. The evaluation of nanomechanical properties plays an important role in the development of new nanowire-based devices. Recently, we are engaged in developing an easy way for nanomechanical measurement by using a planar-mode piezoresistive vibration sensor fabricated with less process cost and package difficulties. Theoretical analysis and simulation results suggested that the device is capable of high-sensitive and variety, and it is expected to evaluate mechanical properties of metallic or metallic oxide nanowires.

2P1-018 AN ENERGY HARVESTING DEVICE MANUFACTURED USING THE COMMERCIAL 0.18 mm CMOS PROCESS .. No.130
Ching-Liang Dai, Ming-Zhi Yang, Shih-Wen Peng
Department of Mechanical Engineering, National Chung Hsing University, Taichung, 402 Taiwan
This study investigates the fabrication and characterization of an energy harvesting device using the commercial 0.18 μm CMOS (complementary metal oxide semiconductor) process. Based on the thermoelectric method, the energy harvesting device converts thermal energy into electrical power. The energy harvesting device is constructed by 408 thermocouples in series, and each thermocouple is composed of p-type and n-type polysilicon strips. In order to increase the temperature difference in the hot and cold parts of the thermocouples, the hot part of the thermocouples is suspended to reduce heat sink. The experimental results showed that the energy harvesting device had an output voltage of 0.4 mV at the temperature difference of 15 K and an output power of 125 nW at the temperature difference of 15 K.

2P1-019 PIEZOELECTRIC MEMS DEVICES AND ITS APPLICATION AS BIO-CHEMICAL SENSORS No.145
J. Lu1, T. Sagawa2, L. Zhang1, H. Takagi1, D.F. Wang2, T. Itoh1, R. Maeda2
1Research Center for Ubiquitous MEMS and Micro Engineering (UMEME), AIST, Tsukuba, Ibaraki, 305-8564, Japan
2Department of Mechanical Engineering, Ibaraki University, Hitachi, Ibaraki, 316-8511, Japan
MEMS resonators exhibit extraordinary high sensitivity when used as bio-chemical sensor for detecting weight of specimen, adsorption of molecules, etc. by resonant frequency shift, in which piezoelectric transduction is effective to reduce power consumption for portable applications. However, the sensitivity is deteriorated by piezoelectric film due to its energy dissipation. This paper reviews our recent developed piezoelectric MEMS resonators, including cantilever actuated by PZT and detected by piezoresistive gauge, beam resonator actuated by PZT and detected by electrostatic sensor, disk/oring resonator actuated and detected by PZT, for the pursuit of high-Q-factor, high resonant frequency, and better device sensitivity. The performance of each device was evaluated and investigated. The advantages & weaknesses of above devices were discussed for application as bio-chemical sensors.

2P1-020 A COMPARISON STUDY ON HYDROGEN SENSING PERFORMANCE OF Pt/MoO3 NANOPATELETS COATED WITH A THIN LAYER OF Ta2O5 OR La2O3 .. No.154
1Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong
2School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Australia
In this work, we investigate how hydrogen sensing performance of thermally evaporated MoO3 nanoplatelets can be further improved by RF sputtering a thin layer of tantalum oxide (Ta2O5) or lanthanum oxide (La2O3). We show that dissociated hydrogen atoms cause the thin film layer to be polaronised, inducing a measurable potential difference greater than that as reported previously. We attribute these observations to the presence of numerous traps in the thin layer; their states allow a stronger trapping of charge at the Pt-thin film oxide interface as compared to the MoO3 sensors without the coating. Under exposure to H2 (1000ppm), the maximum change in dielectric constant is 31.6 (at 220 ℃) for the Ta2O5/MoO3 nanoplatelets and 31.6 (at 220 ℃) for the La2O3/MoO3 nanoplatelets. Subsequently, the maximum sensitivity for the Ta2O5/MoO3 and La2O3/MoO3 based sensors is 16.8 and 7.5, respectively.

2P1-021 A TWO-DIMENSIONAL SILICON-ON-GLASS ACTUATOR WITH DISPENDED POLYMER MICROLENS No.156
Pei Li1, Long-Fa Pan1 and Hans Zappe2
1Department of Precision Instrument, Tsinghua University, China
2Department of Microsystems Engineering - IMTEK, University of Freiburg, Germany
Significant advances in the technical capabilities of microlens actuators for optical pickups have been achieved using MEMS technology, enabling miniaturization and integration of optical data storage systems. In this work, a new type of compact silicon-on-glass (SOG) actuator for two-dimensional
2P1-022
FABRICATION OF SILICON NANOPILLARS ARRAY FOR DEVELOPING PCs SENSOR
Mao-Jung Huang1, Chii-Rong Yang2, Chien-Ying Su1 and Ming-Hua Shiao1
1Instrument Technology Research Center, National Applied Research Laboratories, Hsinchu, Taiwan
2Department of Mechatronic Technology, National Taiwan Normal University, Taipei, Taiwan

This paper presents an innovative design of miniature LC-type passive wireless multi-parameter sensor. The sensor consists of multiple planar inductors on a single substrate and variable capacitors formed resonant LC tanks with separated resonant frequencies. The multiple parameters of interest could be remotely measured by tracking the changes in the peak frequencies of the impedance phase at an external readout coil which is magnetically coupled to the sensor.

2P1-023
DESIGN OF LC-TYPE PASSIVE WIRELESS MULTI-PARAMETER SENSOR
Leyue Jiang, Yongyao Cai, Haidong Liu, Yang Zhao
MEMSIC Inc.1 Tech Drive, Suite 325 Andover, MA 01810 , USA

In this paper, a monolithic 3 axis thermal accelerometer has been developed based on standard CMOS process. This 3 axis thermal accelerometer uses exactly the same sensor area and manufacturing process as 2 axis thermal accelerometer reported in the past. It is easy to mass produce and has low cost, small size.

2P1-024
SIMULATION OF THRESHOLD VOLTAGE ADJUSTMENT BY B+ IMPLANTATION FOR PMOS-RADFET APPLICATION
Shuaimin Wang1,2, Peng Liu1, Jinwen Zhang1
1Institute of Microelectronics, Peking University, Beijing, China
2Shenzhen Graduate School of Peking University, Shenzhen, China

In this paper, we demonstrate a novel flexible gas sensor based on polypyrrole (PPy) coated SnO2 nanoparticles that can be employed to detect low concentrations of NO2 (0.5 - 5 ppm) at room temperature. This low-cost, easy-fabrication and wearable gas sensor was fabricated on PET substrate. The sensitive film was formed by first drop casting the solution of SnO2 nanoparticles and FeCl3 on the as patterned interdigital electrodes on PET substrate; then the substrate was exposed to saturated pyrrole vapor for 3h to obtain PPy coated SnO2 sensitive film. Our sensor shows good performance in detecting low concentration NO2 and the estimated detection limit is about 100 ppb at room temperature.

Fabrication of an Ammonia Microsensor Based on Zinc Oxide

Ming-Zhi Yang, Ching-Liang Dai
Department of Mechanical Engineering, National Chung Hsing University, Taichung, Taiwan

The ammonia microsensor is fabricated by the 0.35 μm complementary metal oxide semiconductor (CMOS) process. The sensor is composed of a sensitive film and polysilicon electrodes. Area of the ammonia microsensor is about 1 mm². The sensitive film of the ammonia microsensor is zinc oxide prepared by hydrothermal method. The sensor requires a wet etching process to remove the sacrificial oxide layer and coats the zinc oxide sensitive film on the polysilicon electrodes after the CMOS process. The ammonia microsensor is resistive type. When the sensitive film absorbs or desorbs ammonia gas at room temperature, the sensitive film generates a change in resistance. Experimental results present that the sensitivity of the ammonia microsensor is about 12.6 Ω/ppm at room temperature.

ZnO Nanoparticle as the Sensing Element for the Low-Cost Accelerometers Applications

Jun Tan, Liyi Gao, Tao Shi, Shiwen Wei, Wendong Zhang
1 Key Laboratory of Instrumentation Science & Dynamic Measurement (North University of China), Ministry of Education
2 Science and Technology on Electronic Test & Measurement Laboratory, North University of China, Taiyuan, China

In this research, the ZnO nanoparticles have been used as the strain gauge element, which was applied as the embedded sensing element for the low cost accelerometers. The resistance, capacitance and impedance responses of the ZnO nanoparticle films to the external strain and acceleration, with different nanoparticle density and sizes (5nm, 10nm, 20nm) of ZnO nanoparticle were systematically studied. The maximum capacitance sensitivity of accelerometer can be up to 0.484 pF/g. The linearity is up from 99.219% to 99.549% as the densities increase. This research result showed that ZnO nanoparticles have the potential applications as the sensitive unit to develop the low cost and high sensitivity accelerometer in the future.

A High Sensitivity Micromachined Accelerometer with an Enhanced Inertial Mass SOI MEMS Process

XIE Jianbing, SONG Meng, YUAN Weizheng
1 Micro and Nano Electromechanical Systems Laboratory, Northwestern Polytechnical University, Xi’an, China
2 Key Laboratory of Micro/Nano Systems for Aerospace, Ministry of Education, Xi’an, China

This paper provides an enhanced inertial mass SOI MEMS process for the fabrication of a high sensitivity micromachined accelerometer. In the proposed process, the handle layer of the SOI wafer is used as an enhanced inertial mass, in this way, the inertial mass of the accelerometer can increase by 5-15 times. Therefore, the sensitivity of the MEMS accelerometer can be significantly increased. In this paper, an in-plane single-axis accelerometer is designed firstly. And then, the accelerometer is fabricated in a low resistivity SOI wafer with 60μm thickness device layer and 400μm thickness handle layer through the developed enhanced inertial mass SOI MEMS process. The sensitivity of the fabricated MEMS accelerometer is 2.257 V/g, the linearity of output is within 0.5%, and the power spectral density of the noises is as low as 6.79μV/√Hz.

ASi-Glass Based Pressure Sensor with a Single Piezoresistive Element for Harsh Environment Applications

Hong Zhang, Huiming Xu, Yan Li, Zijun Song, Haisheng San, Yuxi Yu
1 School of Physical and Mechanical & Electrical Engineering, Xiamen University, Xiamen, China
2 Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, China

This paper introduces a Si-Glass based MIMs piezoresistive pressure sensor designed for harsh environment applications, such as vibration, shock and environment conditions with humidity, alkalescence or acidity, electrostatic particles and so on. The sensor chips were fabricated using SOI wafer-glass anodic bonding technology, which enables a single boron-implanted piezoresistor to be on lower surface of silicon diaphragm and be vacuum-sealed in glass cavity. The sensing signals were led out by using the embedded Al electrode structure at the bonding interface of Si-glass to connect single piezoresistor, and two large-area Ni-Au pads are used to electrically connect to the printed circuit board by using the drag soldering technology instead of gold wire bonding. The characteristics of voltage-pressure were measured with constant current under different temperature conditions. A temperature compensation technology is used to calibrate the measured results, by which the sensitivity of 116 mV/(mA•MPa) and accuracy of 5.8% F.S. are obtained.

Photocatalytic Microreactors for Water Purification: Selective Control of Oxidation Pathways

Ning Wang, Ngai Yui Chan, Chap Hang To, Furuiz Tan, Xuming Zhang
Department of Applied Physics, Hong Kong Polytechnic University, Hong Kong

This paper analyzes the different reaction pathways that play major roles in the process of photocatalytic degradation, and presents a novel microfluidic photoelectrocatalytic reactor for selective control of them. This is accomplished by applying positive or negative bias potential to the photocatalytic reaction chamber and to select either the hole-driven or electron-driven oxidation pathway. The experimental results show that the negative bias exhibits higher performance in degrading the model chemical of methylene blue. Such selective control brings several important benefits. It provides another degree of freedom for photocatalysis, and enables detailed kinetic study on the reaction mechanisms. And, the bias eliminates the electron/hole recombination, which is one of the fundamental limits in conventional photocatalytic systems. In additional, the experiment shows that the bias produces a synergetic effect of electrocatalysis and photocatalysis and significantly enhances the degradation efficiency. The photoelectrocatalytic microreactor shows high stability and may be scaled up for high-performance water purification.
2P1-032 ELECTROSPUN NICKEL OXIDE NANOFIBERS FOR GAS SENSOR APPLICATION
Haiyan Liu, Xiang Wang, Guangqi He, Yihong Lin, Jin Wei, Jianyi Zheng, Gaofeng Zheng, Daoheng Sun
Department of Mechanical and Electrical Engineering, Xiamen University, China

Oxide gas sensor based on electrospun nanofibers were fabricated and studied in this paper. Polyvinyl pyrrolidone (PVP)/Nickel acetate precursor nanofibers were electrospun, which were sintered into Nickel oxide (NiO) nanofibers with diameter in the range of 100 to 400 nm. The morphology and structure of NiO nanofibers were characterized by scanning electron microscopy and X-ray diffraction. The Gas sensing properties (C2H6O/C3H8O/H2) of NiO nanofibers exhibited rapid response/recovery sensitivity with all the three target gases at room temperature. The response/recovery time of electrospun NiO nanofiber gas sensor for C2H6O/C3H8O/H2 were 4.5/5.5s, 2.5/2s and 16/5s; and the sensitivity were 11.0, 15.9 and 72.5, respectively. These results suggest that the electrospun NiO nanofibers are promising for gas sensor applications.

2P1-035 COMPRESSIVE SENSING OF NEURAL ACTION POTENTIALS USING NANO PLATINUM BLACK MODIFIED MICROELECTRODE ARRAY
Shuai Zhou1, Bingchen Zhang2, Shengwei Xu1, Mixia Wang1, Bowei Du1, Wen Hong2, Yingong Wu2, Xinxia Cai1,2
1State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Science, Beijing, China
2University of Chinese Academy of Sciences, Beijing, China

Planar-type potentiometric CO2 gas sensors using thermal evaporated LiP2O5 film as the solid electrolyte were fabricated. Al2O3 plates with rough and smooth surfaces were used as the substrates of the sensors. X-ray diffraction analysis, atomic force microscope and scanning electron microscope were used to characterize the LiP2O5 films. The sensing properties were investigated in the range of 500–5000 ppm CO2 concentrations at 480 °C. Both the rough substrate (r-sensor) and the smooth substrate sensor (s-sensor) showed a good Nernst behavior. The output EMF of s-sensor showed a more stable signal than the r-sensor. Response and recovery times of the r-sensor were 40 s and 75 s, and for the s-sensor they were 35 s and 60 s. The ΔEMF/decade values obtained from the r-sensor and s-sensor were 45 mV/decade and 55 mV/decade, respectively. It can be found that the Nernst’s slope of the s-sensor was closer to the theoretically value. The results revealed that the substrate surface roughness may influence the characteristics of LiP2O5 film and the response properties of the sensors to CO2.

2P1-036 A NOVEL PLANAR MICROELECTRODE ARRAY FABRICATED FOR BRAIN SLICE ELECTROPHYSIOLOGY
Tingjun Jiang1,2, Chunxiao Liu1, Shengwei Xu1, YiLin Song1, Nansen Lin1, Wentao Shi2, Xinxia Cai1,2
1State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Science, Beijing, China
2University of Chinese Academy of Sciences, Beijing, China

To provide an effective and widely applicable tool for electrophysiological experiments of acute hippocampal slices, a novel planar microelectrode array (pMEA) was fabricated by standard photolithography technology. The novel pMEA has a special distribution of microelectrodes, with the nano-structure interfaces, the low impedance and superior signal-to-noise ratio characteristics. It could be directly applied to the electro-physiological experiments for different regions of acute hippocampal slices from rat brains. The electrophysiological signals from the CA3 and CA1 regions of an acute hippocampal slice were successfully recorded by the novel pMEA in this article.
2P1-037

ELECTRICAL PROPERTIES OF MICRO-HEATERS USING SPUTTERED NiCr THIN FILM

Ting-Ting Wu, Jing-Quan Liu, Shuai-Dong Jiang, Bin Xu, Bin Yang, Hong-Ting Zhu, Chun-Sheng Yang

1. Institute of Mico and Nano Fabrication Laboratory, Shanghai, China
2. Science and Technology on Micro-Nano Fabrication Laboratory, Shanghai, China

NiCr (80/20 at.%) thin films were deposited on SiO2/Si substrates as a cryogenic heater for DC magnetron sputtering technique. After a series of annealing treatments under various conditions, the electrical resistivity and microstructure of the films were investigated. The crystallinity and composition of the films were analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The films are changed from crystalline to amorphous phase after annealing at 250 °C in nitrogen ambient and the annealing conditions have a significant effect on the resistivity and temperature coefficient of resistance (TCR) of the films. TCR of the samples annealed at 250 °C for 9 minutes in N2 shows 9.23 ppm/K at 20K which is finally confirmed as the optimal result.

2P1-038

A DUAL MODE NEURAL SIGNAL RECORDING SYSTEM FOR SYNCHRONOUS NEUROELECTRICAL AND NEUROCHEMICAL DETECTION

Shengwei Xu, Nansen Lin, Dalei Wang, Wenjing Yu, Wentao Shi, Tingjun Jiang, Xin Xiu Cui

1. University of Chinese Academy of Sciences, Beijing, China
2. Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China

This paper presents a 64-channel Dual Mode Neural Signal Recording System (DMNSRS) for detection of neuroelectrical and neurochemical signals. The DMNSRS comprises neurochemical recording module with current resolution of 1 nA and neuroelectricity recording module with voltage resolution of 0.3 μV. The two modules can work synchronously without mutual interference. In a global cerebral ischemia experiment, using Multi-Electrode Arrays (MEA) as neurobiological electrode and a single-walled carbon nanotube (SWNT)-modified glassy carbon electrode as neurochemical working electrode, the neuroelectrical and neurochemical signals are synchronously recorded by the DMNSRS in the Sprague-Dawley (SD) rat cortex.

2P1-039

MAGNETICALLY ACTUATED RESONANT PIEZORESISTIVE MICROCANTILEVER OPERATING IN FLUID FOR DC CURRENT MEASUREMENT

Guiming Zhang, Libo Zhao, Zhuangde Jiang, Longqi Xu, Yuwong Zhao, Xiaopeng Wang, Zhigang Liu

1. State Key Laboratory of Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an, China
2. Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, Xi’an Jiaotong University, Xi’an, China

A novel dc current sensor based on magnetically actuated resonant piezoresistive microcantilever is proposed. The sensor measures the dc current by detecting the shift of resonant frequency of the microcantilever. A detailed theoretical study on the relationship between the current and the cantilever’s resonant frequency is also given. To reduce force and displacement noise, the microcantilever works in the fluid with good thermal conductivity. The experimental results show that the sensor can achieve a sub-milliampere resolution and the accuracy is found to be 3.93% for the current of 0.5 to 5 mA.

2P1-040

FABRICATION AND CHARACTERIZATION OF A NOVEL MULTI-ANNULAR TYPE BACKSCATTERED ELECTRON DETECTOR FOR SEM

Yun-Ju Chuang, Pei-Ru Chen, Wei-Rui Lin, Fu-Ron Chen

1. Department of Biomedical Engineering, Ming Chuan University, Taoyuan, Taiwan
2. Department of Engineering and System Science, National Tsing Hua University, Hsinchu, Taiwan

A novel silicon PIN diode for detecting backscattered electrons in SEM was proposed and fabricated. The multi-annular configuration enables to provide better surface topography contrast of BSE image compared with traditional quadratic configuration. In this study, the multi-annular backscattered electron detector (BSED) can provide surface topography contrast of 82.11 nA/μm, which is 105% increase as compared with commercial BSED. Besides, the multi-annular detector has lower threshold detective energy of 1.28 keV and wide detective dynamic range (up to 30 keV). It is demonstrated that the multi-annular BSE detector is well suited for imaging in SEM system.

2P1-041

AN INTERFACE ASIC OF QUARTZ VIBRATORY GYROSCOPE WITH 0.8°/HOUR ROOT ALLAN VARIANCE

Qingyi Wang, Weiping Chen, Liang Yin, Xiaowei Liu, He Zhang

MEMS Center, Harbin Institute of Technology, Harbin, Heilingjiang, China

This paper analyzed the factor of bias drift of quartz vibratory gyroscope, proposed improving bias stability of quartz vibratory gyroscope and designed an interface ASIC of quartz vibratory gyroscope. The bias instability is generated by characteristic of noise in the detecting circuit and the quantity of the driving single in the exciting circuit. We propose a sine-wave exciting circuit which has lower phase noise than the traditional exciting approach. An operational amplifier with low noise and offset voltage temperature coefficient is designed to decrease the bias instability. The interface ASIC integrated on a 5×4.4mm chip with 0.5μm CMOS process has 40μm power supply, 1μV/Hz1/2 equivalent input noise density, and 0.8°/hour root Allan variance.

2P1-042

A MULTI-CHANNEL TEST SYSTEM FOR CALIBRATION OF MEMS BAROMETRIC PRESSURE SENSORS

Lou Wenzhong, Ding Xuran, Hong Rongsen

State Key Laboratory of Mechatronics Engineering and Control, Beijing Institute of Technology, China

For the advantages of small volume, low power consumption and high accuracy, MEMS sensors have been widely used in many fields, especially for...
2P1-043

RESEARCH ON THE STRUCTURE OF ULTRATHIN SI PIN DETECTOR .. No.311
Peiquan Wang, Dayu Tian, Shaonan Wang, Min Yu, Yufeng Jin
National Key Laboratory of Nano/Micro Fabrication Technology, Institute of Microelectronics, Peking University, Beijing, China
A micromachined cantilever-based flow sensor is designed, depending on the detection of surface strain on the cantilever caused by the mass flow. In the continuous flow mode, the deflection of cantilever is directly proportional to the flow rate. The working mechanism of the strain beam in the flow sensor is analyzed, and the finite element method (FEM) is used to investigate the vibratory modes and optimize the structure of the design. The experimental results demonstrate the validity of the design.

2P1-044

COMPACT MULTI-LAYER MAGNETIC SHIELDS FOR CHIP-SCALE ATOMIC DEVICES No.318
L. Xuan, H. Dong, C. Zhuo
School of Instrumentation Science and Opto-electronics Engineering, Beihang University, Beijing, China
We have designed four sets of multi-layer nested magnetic shields. Experiments show that the individual shielding layers range from 3.3cm to 5.3cm. The four sets of magnetic shields are tested by fluxgate magnetometer separately. The result of experiment is in excellent agreement with theoretical calculations. The four sets of multi-layer compact magnetic shields made of high-permeability material are compared. The largest shielding factor measured was 32.3 dB for a nested set of three cylinders (Set 2). The nested two sphere structure (Set 4) has the largest uniform region (12mm). The nested one shell of sphere and one cylinder shell (Set 3) achieve the best trade-off between uniform region and shielding factor.

2P1-045

THREE DIMENSIONAL COMPENSATION SPHERICAL COILS FOR COMPACT ATOMIC MAGNETOMETERS ... No.320
C. Zhuo, H. Dong, L. Xuan
School of Instrumentation Science and Opto-electronics Engineering, Beihang University, Beijing, China
To avoid the broadening of Zeeman resonances of the vector atomic magnetometer working in an unshielded environment, the rapid and accurate magnetic compensation is necessary. A three dimensional mini spherical compensating system is presented, which can be used together with a chip-scale atomic magnetometer to realize an ultra-high precision field measurement. Based on the field gradient method, parameters are optimized to obtain a uniformity of 10-3 over the region of one half radius with a good tolerance on dimensional variations. A prototype applied in the single laser beam scheme has been built and the experimental results demonstrate the validity of the design.

2P1-046

DESIGN, SIMULATION AND FABRICATION OF A MICROMACHINED CANTILEVER-BASED FLOW SENSOR ... No.328
Pei Chen, Yulong Zhao, Yiyao Li
State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an, China
A micromachined cantilever-based flow sensor is designed, depending on the detection of surface strain on the cantilever caused by the mass flow. In the continuous flow mode, the deflection of cantilever is directly proportional to the flow rate. The working mechanism of the strain beam in the flow sensor is analyzed, and the finite element method (FEM) is used to investigate the structural deformation and stress distribution, and the FLUENT is used to simulate the fluid. The sensitivity of the sensor is measured by comparing the output signal with the flow rate. The experimental results show that the sensor has good linearity and sensitivity.

2P1-047

APPLICATION OF MICROMACHINED QUARTZ TUNING FORK RESONATOR FOR TEMPERATURE SENSING ... No.360
Xin Li, Jing Ma, Hai-bo Xu, Zhi-chao Yu
1Computer Center, Harbin University of Science and Technology, China
2College of Automation, Harbin University of Science and Technology, China
This article describes a micromachined quartz tuning fork resonator, 6 mm in height by 2 mm in diameter, holding a two-terminal electronic component with a nominal frequency of 36 kHz (at zero degree) and 15 pF typical capacitance paked in a 90 Pa He gass sealed metal container, which has been used as a sensor for temperature measurement with good sensitivity, repeatability and reliability. The temperature sensor is ZYtw-cut-quartz crystal bulk acoustic wave resonator vibrating in a flexural mode. Finite element method is used to analyze the vibratory modes and optimize the structure of the sensor. Design and performance analysis of the quartz tuning fork temperature sensor has been conducted. The sensor prototype was successfully fabricated and calibrated in operation from 0°C to 100°C with sensitivity of 80 ppm/°C.
2P1-048

PHOTOCATALYTIC DIGESTION OF TOTAL PHOSPHORUS IN THE PRESENCE OF H\textsubscript{2}O\textsubscript{2} UTILIZING NANO-TiO\textsubscript{2} PHOTOCATALYST ... No.363

Tian Dong1,2, Jianhua Tong1, Chao Bian1, Jiuhui Sun1, Shanhong Xia1
1State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing, China
2University of Chinese Academy of Sciences, Beijing, China

In this work, an ultra-violet (UV) photocatalysis method in the presence of H\textsubscript{2}O\textsubscript{2} utilizing nano-TiO\textsubscript{2} photocatalyst is presented for the digestion of total phosphorus (TP) in water. The UV digestion of 4 mg/L of sodium glycerophosphate solutions (by weight of P) were conducted at different digestion time and concentrations of H\textsubscript{2}O\textsubscript{2}. The H\textsubscript{2}O\textsubscript{2} added to the water samples could increase the formation rate of strong oxidant hydroxyl radicals (•OH), but excess H\textsubscript{2}O\textsubscript{2} will consume •OH and reduce the conversion rate. The optimum concentration of H\textsubscript{2}O\textsubscript{2} obtained in this work was 740mg/L. At the condition of 60min and 740 mg/L of H\textsubscript{2}O\textsubscript{2}, the conversion rate of sodium glycerophosphate reached about 90%, and the maximum value of rate constant k was 0.0506 min-1. Compared with the traditional thermal oxidation method for TP digestion, this UV/H\textsubscript{2}O\textsubscript{2}hotocatalysis digestion method enables the digestion process work at normal pressure. Compared with the individual UV photocatalysis process, UV/H\textsubscript{2}O\textsubscript{2} digestion method decreases the digestion time from two hours to about an hour.

2P1-049

ANALYSIS OF ELECTROMECHANICAL INTERFACE MODEL FOR LIQUID FLOATED MICRO-GYROSCOPE ... No.372

Mingyu Ren1, Xiaowei Liu1, Wen Zuo1, Zhang Mao1
1MEMS center, Harbin Institute of Technology, China

This paper presents an electromechanical interface model of liquid floated micro-gyroscope, which can analyze sensing capacitors and resistance of gyroscope. The impacts of them are analyzed and simulated with the simulation software of circuit. The analytic results indicate that the reasonable interface circuit can substantially remove the impacts of these parasitic capacitances, increase the signal noise ratio. To ensure the high resolution, the model of liquid floated micro-gyroscope with ANSOFT conducted. The results show the transfer characteristics of the sensor and nonlinear error of transfer characteristics.

2P1-050

A METHOD OF STRUCTURAL TRimming TO REDUCE MODE COUPling ERROR FOR MICRO-GYROSCOPES ... No.374

Songqi Hu, Hongjian Cui, Kun He, Zhanqiang Hou, Peng Chen, Dingbang Xiao, Xuezhong Wu
College of Mechatronics and Automation, National University of Defense Technology, Changsha, China

This paper presents a novel method of structural trimming to reduce the mode coupling error with the focus on micro-gyroscopes. A UV nanosecond laser was used to remove materials with determined size at certain point on the vibratory structure of the micro-gyroscope. The peak-peak voltage of the mode coupling error signal of the gyroscope prototype studied in this paper could be reduced from 3.52V to 0.082V. Furthermore, the zero-velocity output of the same gyroscope prototype was decreased from 244mV to 14mV after coarse trimming and fine trimming. Demonstrated theoretically and experimentally, this structural trimming by UV nanosecond laser is an effective way to reduce mode coupling error for improving the micro-gyroscope performance.

2P1-051

RELIABILITY EVALUATION OF MICROMIRROR OF DOUBLE S-SHAPED UNIMORPH PIEZOELECTRIC ACTUATOR WITH PROBABILISTIC APPROACH ... No.376

Wenjing Liu, Yongming Tang, Baoping Wang
School of Electronics Science and Engineering, Southeast University, Nanjing, China

This paper presents the long time reliability evaluation of a micromirror with double S-shaped unimorph piezoelectric (dSUP) actuator design using a probabilistic approach. The lifetime (number of cycles to failure) of the piezoelectric actuator, electrical strength, and electrical load are considered as the random variables; and their probability distributions are discussed. The interference model of electrical load and electrical strength is used to evaluate the reliability of dSUP actuators. By this approach, the relationship between the reliability and the lifetime of the dSUP actuator has been deduced.

2P1-052

REPEATABILITY STUDY OF 2D MEMS MIRRORS BASED ON S-SHAPED AISI602 BIMORPHS ... No.377

Qiao Chen1, Hao Zhang1,2, Xiaoyang Zhang1, Dacheng Xu2, Huihai Xie3
1Wuxi WiO Technology Co. Ltd, Wuxi, China
2College of Electronics and Information Science, Soochow University, Suzhou, China
3Department of Electrical and Computer Engineering, University of Florida, Gainesville, Florida, USA

MEMS devices based on bimorphs are affected by several effects including creep, stress, and fracture in bimorph structures. In this paper, we present the reliability study of an S-shaped bimorph MEMS mirror. The following tests are performed: 100 million cycle scanning, vibration, and isothermal holding. From two hours to about an hour.

2P1-053

MAGNETO-FEM ANALYSIS FOR MICRO ACTUATOR USING ARRAY OF MAGNETIC ELEMENTS ... No.386

Fuji Tsumori, Kenji Hatamura, Hyungoo Kang, Toshiko Osada, Hideaki Maeda
Department of Mechanical Engineering, Kyushu University, Japan

This paper reports a magnetic actuator using interaction between micro magnetic elements. It was already reported that the present actuator can work...
even if the structure was miniaturized to nano-scale. In the present work, simple fabrication process with photolithography and PDMS casting was employed to obtain beam type structures with micro array of magnetic elements on their surface. Two samples with simple grid pattern were prepared for testing. These samples had the same grid pattern but different orientation, which caused directly opposite bending deformation under the same applied magnetic field. We used magneto finite element method (FEM) to explain the behavior of the present actuators.

2P1-054 CANTILEVER ARRAYED BLOOD PRESSURE SENSOR FOR ARTERIAL APPLANATION TONOMETRY…...No.409
Byeunghleu Lee1, Jinwoo Jeong1, Chanseob Cho1, Jaeseok Kim1, Bonghwan Kim1, Hyeon Cheol Kim1, and Kukjin Chun2
1Mechatronics Engineering, Korea University of Technology and Education, Chungnam 330-708, Korea
2Electrical and Computer Engineering, Seoul National University, Seoul 151-742, Korea
3School of Electrical Engineering, Kyungpook National University, Gyeongbuk, Korea
4Center for Bionics, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 130-650, Korea
5Electronics Engineering, Catholic University of Daegu, Gyeongbuk 712-702, Korea
6Electrical Engineering, University of Ulm, Ulm 89081, Germany

We developed a cantilever-arrayed blood pressure sensor array fabricated by (111) silicon bulk-micromachining for the noninvasive and continuous measurement of blood pressure. The blood pressure sensor measures the blood pressure based on the change in resistance of the piezoresistor on a 5-μm-thick-arrayed perforated membrane and 20-μm-thick metal pads. The length and width of the unit membrane are 210 and 310 μm, respectively. The width of the insensible zone between adjacent units is only 10 μm. The resistance change over contact force was measured to verify the performance. The good linearity of the result confirmed that the PDMS package transfers the forces appropriately. The measured sensitivity was about 4.5%N. The maximum measurement range and resolution of the fabricated blood pressure sensor were greater than 900 mmHg and less than 1 mmHg, respectively.

2P1-055 A NOVEL FLEXIBLE CAPACITIVE MICROMACHINED ULTRASONIC TRANSDUCER (CMUT) ARRAY WITH ISOLATED METALLIC ISLANDS RIVETED TO A POLYMER FILM ………………………………….No.414
Po-Fat Chong, Xiaomei Shi, Ching-Hsiang Cheng
Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hong Kong

This paper reports a method for fabricating CMUT arrays using a novel rivet structure to fasten isolated metal islands to the flexible polymer film. Previously, a stretchable CMUT array was reported from our group, in which both the membrane and the cavity were fabricated using poly dimethylsiloxane (PDMS) then bonded together by O2 plasma when electrodes were made by screen-printing of liquid metal alloy. Comparing to the PDMS membrane, the nickel membrane used here has higher resonant frequency for ultrasonic imaging. In this CMUT array, nickel over-plating is employed to form the rivet structure for securing metal islands to the polymer film, which can solve the adhesion problem between metal and polymer. EPON 1002F photore sist can be patterned to form via holes and also serves as the polymer film. The calculation result shows that the concave bottom electrode can increase the device capacitance compared to the rectangular bottom. The preliminary experimental result shows a resonant frequency at around 6.25 MHz by using an impedance analyzer.

2P1-056 AN ELECTROSTATICALLY DRIVEN PERISTALTIC MICROPUMP WITH AN ITO N TIN OXIDE ELECTRODE ………………………………………………………...No.416
Bonghwan Kim1, Ki Sung Lee2, and Mark A Shannon2
1Department of Electronics Engineering, Catholic University of Daegu, Gyeongbuk, Korea
2Mechanical Science and Engineering, University of Illinois, Urbana, IL, USA

An electrostatically driven valveless double-sided peristaltic micropump with an indium tin oxide (ITO) transparent electrode has been developed for gas chromatography. In order to verify the motion of the pump, an ITO-ITO micropump was fabricated, and in order to measure flow rate, an ITO-Si micropump was fabricated. The micropump was fabricated on an ITO on glass substrate and a silicon substrate with a polyimide membrane. A maximum flow rate of 27.19 μl/min was measured at 4 Hz and 100 VDC. The micropump was operated by 4 electrodes with a 4-phase sequencing actuation.

2P1-057 STRUCTURE DESIGN OF OUT-PLANE EVANESCENT COUPLING ACCELEROMETER WITH SUB-WAVELENGTH GRATINGS …………………………………………….No.423
Lishuang Feng1,2, Buoyin Yao1,2, Zhen Zhou1,2, Wenpu Wang1,2, Xiao Wang1,2
1Key Laboratory of Micro-nano Measurement-manipulation and Physics (Ministry of Education), Beihang University, Beijing, China
2Fundamental Science on Novel Inertial Instrument & Navigation System Technology Laboratory,Beihang University, China

Evanescent Wave Coupling accelerometer, based on near-field evanescent waves coupling by means of sub-wavelength gratings, is a novel MOEMS accelerometer with high performance. It is widely used in highly precise navigation, seismic sensing and oil-field etc. for its immunity to electromagnetic interference, remote sensing, extremely high-sensitivity[3]. However, it is difficult to realize such kind of accelerometer due to the fabrication of sub-wavelength gratings with high aspect ratio. Recently, out-plane MOEMS accelerometer based on evanescent wave coupling using sub-wavelength gratings has generated considerable interest for its fabrication simplicity. We envisioned a novel out-plane evanescent wave coupling accelerometer with high precision integrating the large mass, weak spring and sub-wavelength gratings together. Design and simulation of the overall structure were made with ANSYS. The novel out-plane accelerometer was finally designed with displacement sensitivity 2033 mmG, corresponding to 1st diffraction beam optical sensitivity 0.46%/mg. These results provide a theoretical basis for design and fabrication of out-plane evanescent coupling accelerometer.

2P1-058 FABRICATION AND ANALYSIS OF OPTICAL MICROSHERE CAVITY BASED ON HIGH Q ERBIUM-DOPED ...No.427
Shu-Bin Yan1,2, Xiao-Qian Wang1,2, Ke-shen MA1,2, An-fu ZHANG1,2, Chen-Yang Xue1,2, Wen-Dong Zhang1,2
1Mechanical Science and Engineering, University of Science and Technology of China, Hefei, China
2Department of Electrical Engineering, The Hong Kong University of Science and Technology, Hong Kong, China

A new approach for the fabrication of high-Q Er-doped optical microspheres is presented. The Er-doped optical microspheres are fabricated by photolithography, PDMS molding, ion exchange, and chemical etching. The optical microsphere cavity is formed by chemical etching the surface of the Er-doped optical microsphere. The optical microsphere cavity is then used for optical sensing. The optical microsphere cavity is analyzed using finite element method (FEM) and the optical microsphere cavity is fabricated using the FEM results. The optical microsphere cavity is then used for optical sensing. The optical microsphere cavity is fabricated using the FEM results. The optical microsphere cavity is then used for optical sensing.

This paper reports a method for fabricating CMUT arrays using a novel rivet structure to fasten isolated metal islands to the flexible polymer film. The preliminary experimental result shows a resonant frequency at around 6.25 MHz by using an impedance analyzer.
2P1-059

STRUCTURE DESIGN AND SIMULATION OF MICRO DYNAMICALLY TUNED GYROSCOPE WITH THREE EQUILIBRIUM RINGS

Dunhu Xia, Cheng Yu, Shourong Wang, Hongsheng Li, Lan Kong

Key laboratory for Micro-inertial Instrument and Advanced Navigation Technology of Education Ministry, Southeast University, Nanjing, China

The structure of a micro dynamically tuned gyroscope (MDTG) with three equilibrium rings has been designed to eliminate the error caused by the double rotation frequency of the driving shaft like traditional DTG. Some simulations under the optimized structure parameters are given. The mode frequency is separated from 167Hz of the rotation frequency of the motor as simulated. The static deformation is controlled within less than 1μm under gravity and a load in our mechanical simulations. The dynamic deformation is simulated when the rotor rotates at a specified speed. The assembly distance between the electrode plates and the rotor disk is chosen from 40μm to 60μm after the static capacitance simulation.

2P1-060

TIP-TILT-PISTON PIEZOELECTRIC MICROMIRROR WITH FOLDED PZT UNIMORPH ACTUATORS

Wenjun Liao1, Wenzing Lie1, Yongming Tang1, Baobing Wang1, Huihui Xia1
1Department of Electrical and Computer Engineering, University of Florida, USA
2School of Electronics Science and Engineering, Southeast University, Nannjing, China

This paper presents the design, fabrication and characterization of a novel tip-tilt-piston (TTP) scanning micromirror based on an array of folded piezoelectric unimorph actuators. The micromirror can perform rotational scan around two in-plane orthogonal axes as well as out-of-plane piston motion. The measured resonant frequencies of the fabricated micromirror are 362 Hz (piston), 685 Hz (x axis scan), 1250 Hz (y axis scan) and 19.2 kHz (fast y axis scan), respectively.

2P1-061

ARTIFICIAL HAIR CELL SENSORS USING LIQUID METAL ALLOY AS PIEZORESISTORS

Xiaomei Shi, Ching-Hsiang Cheng
Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hong Kong

In this paper, we present the design, fabrication process, and testing results of an artificial hair cell sensor made by liquid metal encapsulated in a polydimethylsiloxane (PDMS) substrate. Previously, a flexible force sensor was reported from our group, which can detect both normal and shear forces by using liquid metal alloy (Ga-In-Sn) as piezoresistive gauge material encapsulated in a PDMS substrate. Based on this method, we propose an artificial hair cell sensor which can detect two-axis tactile force with a standing artificial hair shaft. Since the liquid-metal piezoresistors deform with the elasticomeric substrate, normal and shear force can be detected with resistance changes of the piezoresistors. Each force sensor comprises a pair of symmetric piezoresistors, which is screen-printed on a suspended PDMS membrane with opposite direction to be sensitive to shear forces. The testing results demonstrate the sensitivity of the force sensor in two-axis directions.

2P1-062

A MICROMACHINED GYROSCOPE WITH AN EFFECTIVE STRESS-RELEASED FRAME

Xin Yu, Wu Xuezhong, Xiao Dingbang, Hou Zhanqiang, He Kun, Chen Zhihua
1Department of Electrical and Computer Engineering, University of Florida, USA
2School of Mechatronics and Automation, National University of Defense Technology, Changsha, China

Structural stress is one of the main factors that influence the performance of micromachined gyroscopes. This paper mainly analyzed the origin of heat stress and its impact. Then an elastic stress-relieved frame structure was designed to reduce the heat stress of the micromachined gyroscope. Simulations were done to prove the effect of the novel structure. Also, a dry-wet-etch combined fabrication method was put forward to fabricate the micromachined gyroscope. Finally, the vacuum property of the gyroscope was tested as well as the scale factor and the bias stability. The scale factor was 50 mV/V/s and the zero bias stability turned out to be 58.60, 35.00 and 31.14 when it started 0 second, 10 minutes and 15 minutes after it was charged.

2P1-063

A TRIAXIAL MONOLITHIC SILICON ACCELEROMETER WITH IMPROVED TEMPERATURE CHARACTERISTICS

Peng Chen, Dingbang Xiao, Zhihua Shen, Ye Yuan, Xinghua Wang, Songqi Hu, Yulei Wu
College of Mechatronics and Automation, National University of Defense Technology, Changsha, China

A novel triaxial monolithic silicon accelerometer with improved temperature characteristics is presented in this paper. Two methods were put forward to improve the temperature characteristics of the accelerometer. One is the optimization of the anchor configuration to decrease the temperature drift, and the other is the integration of an on-chip matching capacitor to counteract capacitance variation. A facile micromachined process flow was investigated, and the differential capacitance readout circuit was setup. The FIM simulations and experimental results prove that the methods are available and effective.
2P1-064

MICRO-FABRICATED POLYMERIC THERMAL ACTUATORS ARRAY FOR RECTIFYING THE DEFORMATION OF MEMS SUBSTRATE

Xinghua Wang, Dinghong Xiao, Zhihua Chen, Zhanjiang Hou, Xuezhong Wu, Jianbin Su

College of Mechatronics and Automation, National University of Defense Technology, Changsha, China

To improve the performance of MEMS device, it is critical that the effect of environmental parameters on these devices be controlled or eliminated. In this paper, we first developed a novel technique by employing thermal actuator and actuators array to rectify the micro deformation of MEMS substrate due to thermal mechanical stress as a result of temperature variation. This PTAA consisting of a 50 μm thick silicon membrane which is supported by an actuators array. The polymeric thermal actuator array (PTAA) was fabricated utilizes SU-8.2100 (Microchem Corp., USA) as the main functional material and thin Titanium/Aluminum(Ti/Al) electrode layer as the microheater. The numerical analysis of the PTAA was implemented with ANSYS based on an thermal-mechanical coupled simulation. According to the analysis results, the actuators material and thin Titanium/Aluminum(Ti/Al) electrode layer as the microheater. The numerical analysis of the PTAA was implemented with ANSYS based on an thermal-mechanical coupled simulation. According to the analysis results, the actuators tend to have relatively high stiffness and large displacement in actuation direction, reaching 3μm in simulation. The PTAA were able to achieve accurate rectifying of the substrates deformation. We mainly present the design, simulation and operation principle of this novel PTAA.

2P1-065

CAPACITIVE MICROMACHINED ULTRASONIC TRANSDUCER AS A RESONANT TEMPERATURE SENSOR

Zhikang Li, Libo Zhao, Zhiyong Ye, Hongyan Wang, Yulong Zhao, Zhanglei Jiang

1The State Key Laboratory for Manufacturing System Engineering, Xi’an Jiaotong University, Xi’an, China
2Shaanxi Institute of Metrology Science,ian, Shaanxi, China

The capacitive ultrasonic transducer (CMUT) was initially proposed for temperature measurement. A simple CMUT structure and the corresponding matching circuits were designed. Then the effects of vibration modes and bias voltage on sensitivity were analyzed by the finite element method. The results showed that the resonant frequency varied almost linearly with the temperature over the range of 45 °C to 120 °C, and the sensitivity and the nonlinear error were about -1931.6ppm/°C (or -21.2 kHz/°C) and 1.33% respectively when the CMUT working at the first order vibration mode with a bias voltage of 22.05V. It was demonstrated that the first order vibration mode had a higher sensitivity than the other three higher modes and the sensitivity could be adjusted by the bias voltage.

2P1-066

DIGITAL CLOSED-LOOP DRIVER DESIGN OF MICROMECHANICAL GYROSCOPES BASED ON COORDINATED ROTATION DIGITAL COMPUTER ALGORITHM

Yuxian Liu, Chunhua He, Dachuan Liu, Zhenchuan Yang, Guizhen Yan

National Key Laboratory of Science and Technology on Micro-Nano Fabrication, Peking University, Beijing, China

A novel digital closed-loop driver is presented for a micromechanical vibratory gyroscope in this paper. Coordinated rotation digital computer algorithm is applied to generate the sine and cosine signals for driving and demodulation processing. Meanwhile, automatic gain control and phase-locked loop are adopted to maintain a constant velocity of the drive mode and guarantee the gyroscope working in the resonant mode. All the control methods are implemented in FPGA device. Experimental results demonstrate that the stability of the amplitude of the drive velocity is about 18ppm, which verifies the effectiveness and accuracy of the digital closed loop for the drive mode. The scale factor, linearity and bias instability of the gyroscope with closed loop controlled sense mode are measured to be 18±5°/V, 0.088% and 19.4°/h, respectively.

2P1-067

AUTOMATIC DETECTION AND COUNTING OF NEMATODES USING A NEW PORTABLE LENSLESS IMAGING PLATFORM

R. Jolivot1, U. Jarujareet1, P. Sarapukdee2, N. Khemthongcharoen1 and W. Piyawattanametha1, 2

1National Electronic and Computer Technology Center, Klong Luang, Pathumthani, 12120, Thailand
2Advanced Imaging Research Center, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand

This paper demonstrates a low-cost portable hologram imaging platform combined with an automatic detection and counting algorithm of micro-object. The aim is to develop a system to automatically count nematode. The developed algorithm is composed of several steps. Hologram images captured from our platform are preprocessed to enhance the raw images and improve further analysis. The second step of the algorithm is based on feature extraction which is a necessary step to describe the detected data. The final step is the classification of the feature combination into two separate classes, nematodes and non-nematodes elements, which is based on a kmean classifier. Numerous tests have been performed to select the best feature combination, yielding high detection and counting rate. The average computational time is of 52.37 seconds, specificity and sensitivity of our algorithm on a 2593×1944 pixels image are 0.978 and 0.923 respectively. The algorithm is only focused on the detection and counting problem and not on computational time.

2P1-068

REALIZATION OF QUARTZ MEMS ACCELEROMETER BASED ON FLIP CHIP PROCESS

Jinxing LIANG, Sujin CUI, Liyan ZHANG, and Ancheng SHAO

Key Laboratory of Micro-Inertial Instrument and Advanced Navigation Technology, Ministry of Education, School of Instrument Science and Engineering, Southeast University, Nanjing, China

This research attends to provide a simple and effective way to precisely assemble a quartz MEMS accelerometer, which is composed of a double-ended tuning fork (DETF) force transducer, and a base-proof mass structure. Flip chip method is proposed to bond the two sides of DETF in length direction onto the base and proof mass structure via AuSn solder utilizing the self-alignment function of reflow process. Finite element analysis method is used to design and optimize the sensor structure including the dimensions of DETF, mass Proof and solder bump height and so on. The optimized accelerometer sensitivity is about 50 Hz/g at a fixed planar dimension in 4 mm×8 mm. The DETF is fabricated on a 100 μm thick silicon wafer and the monolithic base-proof mass structure, which is linked with a thinned flexure, is fabricated on a 300μm thick wafer using well established quartz MEMS wet etching process.
2P1-069
WEAK LIGHT CHARACTERISTICS OF A NEW PHOTOELECTRIC SENSOR WITH POTENTIAL BIOSENSOR APPLICATION

L. Ding, M. J. Wang, Y. Q. Li, X. Y. Liu, J. H. Shen, F. M. Guo
Laboratory of Polar Materials & Devices, School of Information Science Technology, East China Normal University, China

We have designed and developed a field deployable biosensor unit based on a novel proprietary quantum dot-quantum well hybrid structure. We analyzed in detail the detection sensitivity and in particular weak light detection and analysis of the semiconductor optoelectronic device. We designed a readout circuit and a data processing unit to handle the response signal. The sensor unit is equipped with a LCD element for data display and can be used in a centrally managed real-time monitoring system such as for infectious disease management and bio-aerosol monitoring. The high sensitivity of our sensor enables fast and reliable spectral results to aid rapid identification of biological samples.

2P1-070
DESIGN OF A NOVEL DEVICE FOR LIVER CANCER BIOMARKERS DETECTION

Shuaipeng Wang*, Shungao Yin*, Jingjing Wang*, Quan Yuan*, Jinling Yang* and Fuhsu Yang*
*Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China

State Key Laboratory of Transducer Technology, Shanghai 200050, China

Cantilever-based sensors have been widely used in biochemical analysis [1]. However, for the cantilever sensor working in a dynamic mode, the resonance frequency shift not only depends on the mass change, the variation of lever stiffness k caused by the biomolecular adsorption also could have substantial contribution to the frequency shift, and this will result in distinct error for mass detection [2]. In this paper, a novel cantilever array sensor was micro-fabricated for precise bio-marker detection. In order to reducing the effect of k variation due to adsorption, a local biochemical reaction cavity was designed in the free end of the cantilever. Thus the adsorption of cancer biomarker takes place only in the local region of the cantilever instead of the whole lever. This configuration has dramatically improved the performance of the biosensor.

2P1-071
A X-BAND SWITCHED-LINE 5-BIT PHASE SHIFTER WITH RF MEMS MULTITHROW SWITCHES

Y. Du, J. Bao, Z. He, J. Jiang
Department of Electronic Engineering, University of Electronic Science and Technology of China, Chengdu, China

In this paper, a 5-bit switched-line phase shifter is designed, processed and tested for X-band application, which is based on packaged RF MEMS single-pole double-throw(SPDT) and single-pole four-throw(SP4T) switches to get an compact structure. The design and optimization are carried out by analyzing the non-ideal performance of packaged RF MEMS switches and extracting their circuit model parameters. The effects of the bonding-wire connecting RF MEMS switches and peripheral circuits are also analyzed and modeled. The 5-bit phase shifter shows the average measured insertion loss of -3.1 dB, the average return loss of -21.1 dB, and the average absolute phase error of 2.2° at 10GHz. By comparison of simulations and measurements, this paper proposes that the main factors to effect the performances of phase shifters with packaged MEMS switches are parasitic inductances introduced by the bonding-wire and limited isolation of the used switches.

2P1-072
ENERGY REVERSIBLE SI-BASED NEMS SWITCH FOR NONVOLATILE LOGIC SYSTEMS

Liam Boodhoo*, Yun Peng Lin*, Harold M. H. Chong*, Yoshishige Tsujiya*, Tsuboshi Hasegawa* and Hiroshi Mizuta* *
Faculty of Physical and Applied Sciences, University of Southampton, UK
2Atomic Electronics Group, National Institute for Materials Science, Japan
3School of Materials Science, Japan Advanced Institute of Science and Technology, Japan

The paper presents design, analysis and fabrication of novel silicon-based, low-power, non-volatile NEMS logic switches. Non-volatility is achieved by exploiting the Casimir effect and the van der Waals force at mechanical contact between an in-plane, laterally moveable transistor channel and two opposing side gates. Mechanical symmetry is implemented in the design for switching to be energy reversible. Device operation is simulated by coupling close range interatomic force calculations with 3D FEM simulation. ‘On’ and ‘Off’ transistor states are maintained by controlling the surface area of mechanical contact between the barium and the gate electrode. To achieve this, two nano-stiction state controller designs are proposed for experimental comparison. Preliminary devices have been successfully fabricated using ebeam lithography to verify minimum feature size of proposed structures.

2P1-073
METAL-CATALYST FREE INTEGRATION OF SiO2 NANOWIRES INTO CARBON MEMS

Liangliang Xu, Tie Lin Shi, Shuang Xi, Hu Long, Shiyuan Liu and Zirong Tang
*State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, China
2Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China

We presents an innovative technique of integrating silica nanowires to photoresist-derived carbon microelectromechanical systems (C-MEMS) on silicon substrate. The silica nanowires were synthesized through thermal treatment in a tube furnace at 1200℃ under a gaseous environment of N2 and H2. High-temperature annealing and meticulous-controlled pyrolysis atmosphere could affect the formation of unusual SiO2/C-MEMS integrated structures.

2P1-074
ALGORITHM ANALYSIS OF PHM FOR SENSITIVE CARGO TRANSPORTATION

Lou Wenzhong, Liu Peng, Guo Mingru
State Key Laboratory of Mechatronics Engineering and Control, Beijing Institute of Technology, China

Several Prognostics and Health Management (PHM) algorithms are to be analyzed in this paper, and the purpose is set to master the know-how of the optimization of the prognostic algorithms. To implement the PHM for sensitive cargo transportation, based on the original data collected during the dedicated tests, applying the microsystem hardware designed and assembled by the research team, as well as the embedded software. At the end, the framework of the system platform in the future is laid out.
2P1-075 HIGH IMPACT-INDUCED FAILURE OF A NOVEL SOLID MEMS SWITCH

Wang Ying, Lou Wenzhong, Zhao Yue, Wang FuFu
State Key Laboratory of Mechatronics Engineering and Control, Beijing Institute of Technology, Beijing, China

Due to the rapidly growing MEMS initiator market and the needs for smaller, safer and higher integration, more advanced switches are in demand. The novel solid MEMS switch can improve the security and reliability of MEMS initiator, while the leads of its package are weak under high impact. This paper mainly studies the leads reliability of the novel solid MEMS switch under high impact by FEM simulation analysis. Through simulation analysis, the mainly weakness and the potential failure modes of the leads under high impact can be obtained, which can provide theory reference for the design and application of the novel solid MEMS switch.

2P1-076 A HIGH POWER SUPPLY REJECTION RADIO VOLTAGE REFERENCE FOR ENERGY HARVESTERS

Hanru Zhang, Xiuhua Li
Institute of Electronic and Information Engineering, Beijing Jiaotong University, Beijing, China

This paper presents a design of a high power supply rejection radio (PSRR) bandgap voltage reference (BGR) which is used in the processing circuit of energy harvesters. The improvement of the PSRR of the BGR is implemented through adding a pre-regulating circuit to improve the low frequency PSRR and a low pass filter to improve the high frequency PSRR. The BGR is verified by using SMIC 0.18um 1P6M process. The supply voltage is 2.5 V and the BGR provides a reference voltage of 1.19 V. The simulation results show that the PSRR at 1MHz is about -80 dB and the PSRR at DC region is about -125 dB. This circuit also enhances the line regulation performance. A stable output voltage can be obtained when the supply voltage varies from 2.5 V to 6 V. The overall current consumption of this design is less than 50μA.

2P1-077 RESEARCH ON OPTICAL BIOLOGICAL SENSOR USED AS QUANTITATIVE ANALYSIS OF GLUCOSE

Xue Chongyang1, Wang Jinghua1, Liu Chao1, Wang Yonghua1, Cui Danfeng1, Zhang Wendong1, 2

1Science and Technology on Electronic Test & Measurement Laboratory (North University of China), Taiyuan, China
2Key Laboratory of Instrumentation Science & Dynamic Measurement, Ministry of Education, Taiyuan, China

In this paper, we designed and fabricated the biological sensor structure on silicon-based chip and then fixed glucose oxidase molecular on the silicon wafer in chemical bond, thus forming a surface oxidation activation, silane coupling agent deposition, link molecules fixing and glucose oxidase linking. Micro-ring resonator with whispering gallery mode is developed to improve the Q factor and thus enhance the sensitivity of the bio-sensor. In this way, quantitative analysis of the glucose in the test liquid can be achieved through the biological sensor by measuring the shift of the resonant wavelength in transmission spectrum.

2P1-078 TWO STEPS CONTROLLED RELEASED MICRONEEDLE PATCH USED FOR HYPERPIGMENTATION

Tzu-Hui Huang, Chien-Chung Fu, Hsin-Wen Sung
Institute of Nano Engineering and Microsystems (NEMS), National Tsing Hua University, Taiwan

Transdermal delivery is an efficiency way to deliver active ingredients without degraded by GI system and EPR effect. In these years, microneedles patch fabricated by micro mechanical approach allows us to across the skin feasible for a much wider range of drug. For the traditional treatment of hyperpigmentation, a fixed triple combination cream offer maximal efficacy for clinical trial. However, clinical study showed that over 87.5% of patients were noted to have side effects with cream treatment. Here we propose a new design of microneedles patch with better drug localization in different skin layer to treat hyperpigmentation and two-steps controlled released microneedle to eliminate the irritation. The two-step release microneedle patch made of two kinds of biomaterial is prepared by controlling the concentration of tip material. This approach can be a potential technology enabling direct transcutaneous delivery in clinical applications.

2P1-079 EFFECT OF IN ADDITION ON MECHANICAL PROPERTIES OF Sn-9Zn-In/Cu SOLDER

Yi-Ta Wang1, Cheng Jen Ho1, Hsin-Lung Tsai1

1Department of Mechanical and Electromechanical Engineering, National Ilan University, Ilan, Taiwan
2Acer Inc., New Taipei City, Taiwan

In this study, trace amounts (0.5-2 wt%) of indium (In) are added to the Pb-free Sn-9Zn solder. Expect to improve the mechanical properties and find out the optimum conditions of Sn-9Zn-In solder. Tests are conducted to measure micro-hardness and shear strength while microstructure and morphology of fracture surface are observed using scanning electron microscope with elemental composition analyzed by energy dispersive spectrometer. Results show that addition of In to Sn-9Zn solder alloy leads to needle-shaped precipitates formed in the substrate. This not only increases micro-hardness, but also enhances shear strength at Sn-9Zn-In/Cu solder joints. Improvements in both micro-hardness and shear strength confirm that adding In to the solder alloy can contribute to better mechanical properties of Sn-9Zn-In/Cu joints with proper control of soldering temperature and time.

2P1-080 FAST SYNTHESIS OF DENDRITE CRYSTALS ASSISTED BY ACEO AND THE CONTROLLABLE SURFACE-ENHANCED RAMAN SCATTERING IN ELECTRIC FIELD

Jianlong Ji1,2, Pengwei Li1, Shengbo Sang1, Jie Hu1, Geng Li1, Zhaoying Zhou2, Wendong Zhang1

1Micro and Nano-system Research Center, Taiyuan Univ. of Technology, Taiyuan, China
2MEMS Laboratory, Dept. of Precision Instruments and Mechanology, Tsinghua Univ., Beijing, China

A simple and cost-effective orient electrodeposition strategy was developed to synthesize Au dendrites. Dendrites morphology can be prepared by adjusting the parameters, including electrolyte concentration, electrodes shape, AC voltage and frequency. These Au dendrites exhibited well...
reproducible surface – enhanced Raman scattering (SERS) effect using Rhodanine B (RHB) as model molecule. Further experimental results demonstrated that surface enhancement ability can be tuned by external DC electric filed. Our work not only provides a very simple, convenient, cost-effective, and fast route to synthesize Au dendrites, but also opens up new thinking on intelligent platforms of new in-situ SERS sensing instruments.

2P1-081 INTEGRATING THE MICRO-HEATER AND MICROFLUIDIC CHIP TO GENERATE THE GELATIN EMULSIONS AND MICROCAPSULES ………………………………………………………… No.553
Chia-Hsien Yeh, Ke-Rong Chen, and Yu-Cheng Lin
Department of Engineering Science, National Cheng Kung University, Tainan, Taiwan.
The heatable microfluidic chip successfully integrated the micro-heater and flow-focusing device to generate the gelatin emulsions under the various flow rate ratios and voltage, and the gelatin emulsions can apply to encapsulate the vitamin C for drug release. Our purpose is to create the heatable condition for thermo-sensitive hydrogel material and generate the uniform emulsions under any external environment. The gelatin emulsion size is ranged from 45 μm to 120 μm in diameter. Moreover, the gelatin microcapsules of various sizes with the vitamin C was used for drug release.

2P1-082 CONTROL OF SWIMMING IN CRUCIAN CARP: STIMULATION OF THE BRAIN USING AN IMPLANTABLE WIRE ELECTRODE ………………………………………………………………………… No.208
Chuan Zhang, Jingquan Liu, Hongchang Tian, Xiaoyang Kang, Yuefeng Rui, Bin Yang, Hongying Zhu, Chunsheng Yang
Institute of Micro and Nano science and Technology, Shanghai Jiaotong University, Shanghai, China
Control of locomotion in different kinds of animals, or so-called bio-robot, has been reported. Bio-robot is a technology based on the information communication between the nerve tissue and the computer. In this work, to study the locomotion control in carp’s brain, a Parylene-based wire microelectrode was fabricated for stimulation in midbrain. Compared with traditional microelectrodes, wire electrodes provide better bio-compatibility and good mechanical stability. The whole electrode was covered by Parylene C film, except the stimulation sites which are exposed by lift-off process, thus the interface impedance is significantly reduced. After the fabrication, carp cyanus was anesthetized in MS-222 water solution and the cranium was partially removed to expose the midbrain. After all these steps, electrodes are tested to see if they are properly insulated. Then one electrode is implanted into the carp’s midbrain by surgical procedure and the movement of the fish is observed by a video camera. The caudal fin movement of crucian carp is successfully induced by applying a single polar pulse train. This result proved the former theory that control region of carp is located in midbrain. On the other hand, the experiment shows great potential and promising future in the bio-robotic fish.

2P1-083 SELECTIVE DISPERSION OF HIGH PURITY SEMICONDUCTING SINGLE-WALLED CARBON NANO TUBES WITH POLYMERS FOR PRINTED THIN FILM TRANSISTORS …………………………………………………… No.224
Long Qian1,2, Jianwen Zhao1
1Printable Electronics Research Center, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Science, Suzhou, China
2Nano Science and Technology Institute, USTC
Single-walled Nanotubes (SWCNTs) have been regarded as one of most promising materials for fabricating high-performance thin-film transistors (TFTs). However, it is difficult to obtain the high-performance SWCNT TFTs due to the presence of metallic SWCNTs. With the aid of appropriate polymers (regio-regular poly(3-dodecyliithiophene), m-P3DDT), solvent and temperature, we can achieve highly selective dispersion of semiconducting-SWCNTs (s-SWCNTs) and the high-performance SCNT TFTs with on/off ratio up to 2×107 and mobility up to 1.2 cm2 V−1s−1 were obtained. It opens a way to print high-performance SWCNT TFTs based on the sorted s-SWCNTs.

2P1-084 LOW TEMPERATURE SYNTHESIS OF CUBIC BaTiO3 NANOPARTICLES …………………………………………………………………………………………… No.227
Xinzhao Wu, Zheng Chen, Zheng Cui
Printable Electronics Research Centre, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
A new process has been developed to prepare nanocrystalline BaTiO3 at room temperature and atmospheric pressure. The experimental results show that cubic BaTiO3 nanoparticles can be prepared even at room temperature (25℃). These cubic BaTiO3 nanoparticles are irregular quasi-spheres with the size ranging from hundreds of nanometers to tens of nanometers as the temperature is increased from 25 to 80℃. Raman spectra of the products obtained at different temperature confirmed that the BaTiO3 were cubic phase. The influence of reactants concentration on the formation of BaTiO3 nanoparticles was also investigated.

2P1-085 TUNNELING EFFECT ON ENHANCED OLED PERFORMANCE USING Al2O3 BUFFER LAYER …………………………………………………………………… No.230
L. Zhou, W. M. Su, Z. Cui
Printable Electronics Research Center, Suzhou Institute of Nano-Technology and Nano-Bionics, Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou Industrial Park, Suzhou, China.
It has been found that introduction of buffer layers between organic holes transport layer and anode layer plays an important role in improving device stability and hole injection efficiency of organic light-emitting diodes (OLED). As for the mechanism of the improvement due to the buffer layer, it is still controversial. To understand the mechanism behind the enhanced performance of OLED by the buffer layer, a new model is therefore proposed which combines classical model and quantum tunneling model to explain the OLED performance improvement. A thin Al2O3 insulating buffer layer deposited on indium tin oxide (ITO) anode by atomic layer deposition has been investigated for OLED. The observed power efficiency and current efficiency improvement at the optimal thickness of 1.4 nm are well explained by the model. A series of Al2O3 films of different thicknesses were deposited on ITO anode and characterized. Their toughness, sheet resistance, surface potential, and resulted OLED current density were investigated. It is believed that the blocking of hole inject by the Al2O3 buffer layer makes more balanced carrier density in emission layer, thus enhances the current efficiency.
efficiency. Though less number of holes are injected in OLED due to the insertion of Al(O)2 layer, quantum tunneling through the ultra-thin buffer layer play an important role to contribute to the hole injection, which avoids crossing the interface barrier, resulting in less energy consumed and power efficiency enhanced.

HIGH PERFORMANCE THIN-FILM TRANSISTORS USING POLYMER/SWNT COMPOSITE SEMICONDUCTING INK .. No.233
Fan Zhang, Na Lv, Dongyu Zhang, Qiu Song
Printable Electronics Research Center, Suzhou Institute of Nano-tech and Nano-bionics, Suzhou, China

A novel conjugated polymers have been used for selectively dispersion of high purity semiconducting SWCNTs for the application in high-performance thin-film transistors (TFTs). With the sorted-s-SWCNTs, we achieved high-performance SWCNT transistors with very high charge-carrier mobility and on/off current ratio synchronously.

PRINTED CATHODE WITH ALUMINUM INK FOR FLEXIBLE ELECTRONIC DEVICES No.237
F. Fei, W. M. Su
Printable Electronics Research Center, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, China

An Al precursor ink, OAAl5 (C2H5Al) has been prepared which can easily decompose and form metal Al at normal pressure and low temperature (80 °C) with the catalyst of TICl4. The prepared Al films by drop-casting show a good quality with low resistance (1.86 Ω cm) and low work function (3.76eV).

HIGHLY CONDUCTIVE NANOSILVER INK TREATED AT MILD TEMPERATURES BY REDUCING THE AMOUNT OF PVP ... No.306
FU Jilan, MO Lixin, Li Yaling, Li Weiwei, Li Wenbo, Ran Jun, Fan Xinxing, Zhan Xidhe & Li Luhai
Beijing Printed Electronics Engineering Technology Research Center, Beijing Institute of Graphic Communication, Beijing, China

Silver nanoparticles colloid was obtained by reducing the high molar concentration of AgNO3 (up to 3.92 M) with the hydrazine hydrate (H3N2•H2O) as reductant in the presence of polyethylene pyrrole (PVP) as the protectant. It was well known that the polymer protective agent capped on the surface of silver nanoparticles could control the particles growth and stabilize the nanosilver suspension. Meanwhile, the insulative PVP capped on the surface of nanosilver could prevent the transfer of electrons, resulting in the conductivity decreasing of the corresponding nanosilver films. Thus, the amount of PVP should be reduced in order to improve its conductivity. The silver nanoparticles was treated by the chemical sedimentation, which is the most widely used solid-liquid separation method in the preparation of nanosilver conductive printing ink, for its low costing and without destroying the structure of the silver nanoparticles. It was found that the treatment can effectively reduce the amount of PVP. Good dispersion and electrical conductivity nanosilver ink can be obtained by acetone sedimentation for three times. The average size of the particles after sedimentation is 120.3nm, while the initial size is 92nm and no precipitation was observed even after aging for 15 days. Surface resistance of the silver layer coated on PET can be reduced to 226.4mΩ/□ after heating at 100°C for 30s, and the conductive ink with these properties can be widely used in preparation of transparent conductive film and RFID antennas.

FABRICATION OF HIGHLY TRANSPARENT ULTRATHIN FILMS BASED ON REDUCED GRAPHENE OXIDE ... No.333
Zuoping Xiong1,2, Xuwen Wang1, Ting Zhang1
1Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
2National School of Engineering and Technology, University of Science and Technology of China, Hefei, China

We developed a facile and reproducible method for fabrication of reduced graphene oxide (rGO) ultrathin films with high transparency (over 85% at 550 nm), uniform sheet resistances (~106 Ω·sq), and controlled thickness. The rGO ultrathin films can be successfully obtained when spray-coated rGO on glass slide was immersed in deionized water, and can be easily transferred to any substrates of interest for further construction of optoelectronic-devices.

SYNTHESIS AND SIZE CONTROL OF NANO/SUBMICRON COPPER PARTICLES BY FEEDING STRATEGIES .. No.342
LIU Chengmei1, LI Wenbo1, HAN Lu1, MO Lixin1, ZHAO Yu Xia1, WEI Yan2, LI Luhai3
1Printable Electronics Research Center and Key Lab of Printing and Packaging Material Technology, Beijing Institute of Graphic Communication, Beijing, China
2Department of Chemistry, Tsinghua University, Beijing, China
3Department of Chemistry, Tsinghua University, Beijing, China Using Copper nitrate tributrate (Cu(NO3)2•3H2O) as precursor, hydrazine hydrate (N2H4•H2O) as reducing agent and Ploy(N-vinylpyrrolidone) (PVP) as capping agent in the presence of Diethylene glycol (DEG), highly monodisperse copper particles with different diameters were successfully synthesized via polyol method by different feeding strategies. Dynamic light scattering (DLS) and Scanning Electron Microscope (SEM) were used to characterize the morphology and particle size of these particles. X-ray diffraction (XRD) was used to measure the chemical constituents of these particles. UV-Vis spectrophotometer was used to signify the absorption spectrum of these particles. The results indicated that copper particles with controllable diameter can be synthesized by different injection rates. The average sizes of the prepared copper particles under 2, 4, 6, 8 ml/min of injection rate were 100nm, 200nm, 300nm, 400nm. The obtained copper particles were phase-pure crystalline, and their structure was face-centered cubic (fcc).
2P1-091 SYNTHESES OF NANO-COPPER PARTICLES FOR CONDUCTIVE INK IN GRAVURE PRINTING No.364
FAN Ximing, MO Lixin, LI Wenbo, LI Wewei, RAN Jun, FU Jian, ZHAO Xizhe, LI Luhai
Beijing Printed Electronics Engineering Technology Research Center, Beijing Institute of Graphic Communication, Beijing, CHINA

Copper nanoparticles were synthesized via a simple chemical method where copper nitrate trihydrate, hydrazine hydrate, and poly (vinylpyrrolidone) were used as copper source, reducing agent and capping agent, respectively. Copper nanoparticles so-prepared were characterized by UV-Visible spectroscopy, X-ray diffraction measurements (XRD), scanning electron microscopy (SEM). The colloids of the copper nanoparticles was obtained after washing and centrifuging by deionized water and acetone three times by which impurity ions can be removed. Suspension of copper nanoparticles for gravure printing was obtained by adding some solvent and additives. Then, samples were obtained by proofing and sintered under the nitrogen ambiance. The resistance and thickness were measured. The result illustrated that the copper particles prepared have size about 80 nm and major particles are spherical. The suspension of copper nanoparticles for gravure printing has 35.1% copper content according to thermal gravimetric analysis (TGA) and 1.29 % PVP. Surface resistance of samples proofing on polyimide film after sintering can reach 6.16 GΩ and the resistivity is 1.09×10-4 Ω·cm.

2P1-092 WIRELESS ENERGY TRANSFER SYSTEM BASED ON HIGH Q FLEXIBLE PLANAR-LITZ MEMS COILS No.383
YANG Li, XIUXIANG Li, FEI Peng, HANU Zhang, WEI Guo, WANGQING Zhu, TIANYANG Yang
Institute of Electronic and Information and Engineering, Beijing Jiaotong University, Beijing, China

Wiresless energy transfer systems were key to the battery of the power supply of implantable prosthetic devices. Coils are the key point of the wireless transfer system and affect the transfer efficiency. In this paper, high Q flexible planar-Litz coil is designed and implemented for the wireless energy transfer system. Theoretical model of planar-Litz coil is given and the measurement result matches the theoretical analysis. The efficiency of wireless transfer system is improved by using the high Q planar-Litz coils. The experiment results show the coupling efficiency can be improved by about 40% as the transfer distance is 0.5cm. At last, resonant coils are added into transfer system to enhance the magnetic resonance, which makes the energy transfer efficiency improved greatly.

2P1-093 GRAVURE FABRICATION AND STABILITY STUDY OF RFID ANTENNA ... No.395
ZHAO Fuyan, MO Lixin, LI Weimei, LI Wenbo, FU Jian, FAN Ximing, RAN Jun, LIU Wei, HOU Yuqun, LI Luhai
Printable Electronics Research Center, Beijing Key Lab of Printing and Packaging Materials and Technology, Beijing Institute of Graphic Communication, Beijing, China

Low cost, RFID antenna is fabricated by gravure printing with PET acting as the substrate. The nano-silver ink with 50% silver content is prepared in the lab and the printing speed is set to 5m/min. After sintering at 150 ℃ for 2min, surface resistance of the antenna reaches to 7.31Ω/sq and thickness of the silver layer is 466nm. Then, the antenna is treated at -40 ℃ for 6h. Interestingly, the resistance of the antenna dropped by 9%, which may due to the limited motivation of PVP in relatively low temperature. In order to study its stability, the RFID antenna has been put into the night side, sunny side and room temperature for 30 days. The resistance is nearly the same as its original after 1 month, though some decreasing appeared. The result indicates that the antenna fabricated shows excellent stability and the working temperature can range from -40 ℃ to 150 ℃.

2P1-094 PATTERNING OF ORGANIC THIN FILM TRANSISTORS BASED ON BLEND SOLUTION VIA SELECTIVE DEWETTING USING KNIFE COATING .. No.400
XUAN Feng1, LIANG Li1, DU Qiu1, ZHAO Zhiqiang1, SHI Qing1, ZHOU Zongsheng1
1Key Lab of Advanced Display Technology, Ministry of Education, National Engineering Lab of Special Display Technology, National Key Lab of Advanced Display Technology, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei, China
2School of Chemical Engineering, Hefei University of Technology, Hefei, China

In the article, low cost, RFID antenna is fabricated by gravure printing with PET acting as the substrate. The nano-silver ink with 50% silver content is prepared in the lab and the printing speed is set to 5m/min. After sintering at 150 ℃, surface resistance of the antenna reaches to 7.31Ω/sq and thickness of the silver layer is 466nm. Then, the antenna is treated at -40 ℃ for 6h. Interestingly, the resistance of the antenna dropped by 9%, which may due to the limited motivation of PVP in relatively low temperature. In order to study its stability, the RFID antenna has been put into the night side, sunny side and room temperature for 30 days. The resistance is nearly the same as its original after 1 month, though some decreasing appeared. The result indicates that the antenna fabricated shows excellent stability and the working temperature can range from -40 ℃ to 150 ℃.

2P1-095 EFFECT OF SELF-ASSEMBLED MONOLAYER(SAM) ON INKJET PRINTED ORGANIC THIN FILM TRANSISTORS OF POLYTHIOPHENE ... No.403
MENGJIE Chen1, RUI Peng1, SHIXIN Chen1, PENG Li2, LONGSHEN Qiu2
1Key Lab of Special Display Technology, Ministry of Education, National Engineering Lab of Special Display Technology, National Key Lab of Advanced Display Technology, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei, China
2School of Chemical Engineering, Hefei University of Technology, Hefei, China

Organic thin film transistors (OTFTs) with bottom gate and bottom contact structure had been prepared by inkjet printing. It’s found that the surface properties of the substrate have a great influence on the morphology of the droplet and the performance of devices. When a bare SiO2 layer was applied, the size of the dried droplet is about 60 μm and it’s hard to form a uniform film. The best field-effect mobility of inkjet printed OTFT devices was only 6×10^-6 cm^2 V^-1 s^-1 with an on/off current ratio of 60. After treating the substrate using a self-assembled monolayer (SAM) of trichloro(phenethyl)isocyanate (TIPS_Pentacene) and polymer(methyl methacrylate) (PMMA) using knife coating. The blend films remaining in hydrophilic areas formed a TIPS_Pentacene-top and PMMA-bottom bilayer structure. This structure is beneficial for reducing the hysteresis effect and improving the electronic properties of OTFT devices because the PMMA bottom layer can act as a modifier to isolate carrier traps on the hydrophilic areas. Knife coating in wetting/dewetting process is a method to prepare uniformity performance devices in OTFTs array. The maximum mobility of this process is 0.062 cm^2V^-1s^-1 and average hysteresis effect (the D-value of two threshold voltages in dual sweep) is 2.3 V.

96
2P1-096 INKJET PRINTING NARROW FINE AG LINES ON SURFACE MODIFIED POLYMERIC FILMS

W. Tang, Y. Chen, J. Zhao, S. Chen, L. Feng, X. Guo
Department of Electronic Engineering, Shanghai Jiao Tong University, China
In the paper, we have demonstrated a simple but effective method to inkjet print fine Ag conductive lines with improved resolution on polymeric films. This is achieved by forming an ultra-flat polymeric film and modifying its surface energy. As a result, narrow Ag lines (~50 nm) and short gaps (~10 μm) were successfully achieved using optimized printing parameters. Meanwhile these formed Ag lines show fine morphology, smooth surface and high electrical conductivity. The improved resolution is attributed to the reduced spreading of ink droplets on the surface modified substrate. This method shows the potential of directly producing high-resolution electrodes for printed electronics applications.

2P1-097 TRANSPARENT ELASTIC CAPACITIVE PRESSURE SENSORS BASED ON SILVER NANOWIRE ELECTRODES

C. Gu, S. Chen, X. Guo
Department of Electronic Engineering, Shanghai Jiao Tong University, China
Stretchable conductive films were produced by embedding silver nanowires onto the surface of biocompatible polydimethylsiloxane (PDMS) elastomeric membranes with low cost solution based processes. The films showed low sheet resistance (<12Ω/□) and good transparency (40% at 550nm). By laminating two films together, transparent elastic capacitive pressure sensors were made, which present higher sensitivity to that using Al foil as the electrode. A higher concentration of silver nanowire solution was also shown to be able to improve the sensitivity.

2P1-098 ENHANCING FLUORESCENCE RESPONSE OF IMMUNOSENSING BY A DEP CHIP WITH TRANSPARENT ELECTRODES AND MICROCAVITIES ARRAY

Cheng-Hsin Chuang1, Jing-Wei Ju1, Yao-Wei Huang1, Chun-Ping Jen1, Fei-Bin Hsiao1
1Department of Mechanical Engineering, Southern Taiwan University of Science and Technology, Tainan, Taiwan
2Department of Mechanical Engineering and Advanced Institute of Manufacturing for High-Tech Innovations, National Cheng Chung University, Cha Yi, Taiwan
Dielectrophoresis (DEP) has been demonstrated the manipulations of bio-modified particles for biosensors, and the microelectrodes are mostly made of metal materials such as Au, Cu and Pt, etc, however, the metal electrodes could induce extra background noise as observed the DEP chip in a fluorescence microscope. Currently, the fluorescence response still dominates the indicators of immunosensing; therefore, it's important to eliminate the extra background noise of fluorescence response form metal electrodes for an immunosensor. In this study, a DEP chip was utilized to immobilize the nanoparticles in a microcavities array for immunosensing. A transparent conductive material, Indium Tin Oxide (ITO), was employed in the fabrication of DEP electrodes, and the fluorescence responses of DEP chip with transparent (ITO) electrodes were compared with identical DEP chip with conventional Au electrodes during immunosensor. According to experimental results, the enhancement of fluorescence response of DEP chip with ITO electrodes was greater than the values of DEP chip with Au electrodes about 1.57 times and 1.44 times for the immunosensing of 10 nM and 1 nM BSA, respectively. In addition, by applying the DEP force during the immunosensing, the fluorescence response was also enhanced due to the BSA can be condensed by DEP force. The DEP condensation was more significant for immunosensing at low BSA concentration. Consequently, we have demonstrated a DEP chip with transparent ITO electrodes and the background noise of fluorescence response can be eliminated to enhance the sensitivity of immunosensing.

2P1-099 A NANOMETER-RESOLUTION DISPLACEMENT MEASUREMENT SYSTEM BASED ON LASER FEEDBACK INTERFEROMETRY

Huilan Liu1,2, Heming Yao3, Lihuang Feng1
1School of Instrumentation Science and Opto-electronics Engineering, Beihang University, China
2Key Laboratory of Micro-nano Measurement-manipulation and Physics (Ministry of Education), Beihang University, China
3Beihang Sino-French Engineer School, Beihang University, China
Based on laser feedback interferometry (LFI) combined with phase-freezing technology (PFT), a novel displacement measurement system is demonstrated, which improves the measurement resolution to nanometer scale. The phase modulator is added to modulate the external cavity phase, and the PFT is used for sampling and demodulation. The displacement information of the external target is reconstructed. The signal modulation, sampling, reconstruction technology is researched and the simulation results show the feasibility of the method. Error analysis is made for searching the influence of modulation frequency, sampling frequency and reflector vibration frequency. Verification experiment is made to check the accuracy of the system with appropriate parameters. It provides a displacement and vibration measurement method for MEMS elements.

2P1-100 EFFECT OF THE CHEMISORBED MOLECULAR STRUCTURE ON THE FREQUENCY OF CARBON NANOTUBE RESONATORS: MOLECULAR DYNAMICS SIMULATIONS

Ming-Lin Li1, Wei Ye1, Yue Chen1, Xue-Hui Lin1, Wei-Dong Wang1, Xiao-Xiang Yang1
1School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, China
2School of Electrical and Mechanical Engineering, Xidian University, Xi'an, China
Tiny mass attached to the surface of carbon nanotubes (CNTs) would induce its intrinsic frequency shift. Due to their remarkable mechanical properties, such as exceptional high elastic modulus and low weight, CNTs hold significant potential as functional materials for the development of mass sensors and biosensors with atomic mass resolution. The effect of the structure of molecule covalently bonded to the surface of CNTs on its intrinsic frequency shift was investigated with full atom molecular dynamics simulation (FAMDS), which explored the REBO potential and Lennard-Jones potential to represent the interatomic interaction. CNTs were constrained by the clamped-clamped boundary condition and the fixed-free boundary condition, respectively. In order to highlight the effect of molecular structure on the fundamental frequency of CNTs, the simulated results via the FAMDS were
compared with those of additional mass molecular dynamics simulation (AMMDs), in which the mass of the attached molecule is lumped to the bonded carbon atom of CNTs. Results indicate that the structure of the covalently bonded molecular is strong enough to take effect on the frequency response of the CNT resonator.

2P1-101

A NOVEL MICRO HEAT PIPE FOR HIGH-POWER LIGHTEMITTING DIODE MODULE

Yi Luo, Gang Liu, Liangliang Zou, Xiaodong Wang

Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, China

Light-emitting diode (LED) is a novel electronic light source that provides a direct transfer of electrical energy into light. A typical LED power package has a heat flux of 100W/cm², thus high power LEDs face severe thermal challenges due to their small size and general lack of a proper thermal path. The advantage of micro heat pipes (MHPs) is based on the phase change. With the trends of using silicon wafer as the substrate in LED manufacturing, a silicon-Pyrex MHPs was fabricated for quick spread of the heat from LEDs in this paper. Flat plate grooved MHPs is introduced. The grooves were fabricated on the silicon wafer and bonded to Pyrex 7740. Water as selected as the working liquid and the charge rate is 40%. The temperature test experiments were carried out to test the feasibility of the MHPs in LED heat conduction, and the preliminary experiment results indicate that the heat conductivity of MHPs is better than silicon wafer.

2P1-102

FABRICATION OF STABLE SILVER NANOPARTICLES THROUGH A GREEN APPROACH

Wenbin Li¹, Cheng Wang², Wei Zhang¹, Weixiang Ye¹, Shun Huang¹, Zhao Yue¹, Guohua Liu¹

¹College of Information Technical Science, Nankai University, Tianjin, China
²Department of Mechanical Engineering, Columbia University, New York 10027, USA

we had suggested a novel method for the synthesis of silver nanoparticles by suitable choice of materials and solvents. It was a green, straight forward method in an aqueous medium. Additionally, nontoxic reagents were used in the experiment and the process was environmentally friendly. This green approach needs three reagents (dextran, tollens’ reagent, glucose) which come from renewable resources. The effects of the concentration of tollens’ reagent on silver nanoparticles formation and storage stability were studied. The silver nanoparticles were characterized by transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS) and UV-vis spectroscopy. The results indicated that the reaction parameters significantly affected the size, formation rate and distribution of the silver nanoparticles. This method is simple and economical therefore may be practical for large-scale synthesis.

2P1-103

A COMPLETE ANALYTICAL MODEL FOR SQUARE DIAPHRAGM CAPACITIVE SENSOR WITH CLAMPED EDGES

Farah Deeba¹, Shahed Khan Mohammed¹, Md. Shofiqul Islam³

¹Department of Electrical and Electronic Engineering, Bangladesh University of Engineering and Technology, Bangladesh
²Department of Electrical and Electronic Engineering, United International University (UIU), Bangladesh
³Department of Electrical and Computer Engineering, King Abdulaziz University, Jeddah, Saudi Arabia

Capacitive Pressure Sensors have been among the most promising MEMS in recent years due to its inherently low power consumption, higher reliability and better performance. A complete analytical model is necessary to accurately determine the effects of sensing variables on the sensor. In this paper, a mathematical model is developed for square diaphragm capacitive sensors, which includes analytical equations for load-deflection characteristic, pull-in voltage and critical distance at pull-in and capacitance. The work is different from the previous ones in the way that it adopts a direct method to solve the governing equations of deflection which gives the load-deflection characteristic without involving any numerical aid and accounts for both small and large deflection. Again, the numerical integration for capacitance calculation has been replaced by an approximate analytical model which reduces the computational effort comparably. Comparison with experimental data reveals excellent accuracy of the model.
<table>
<thead>
<tr>
<th>No.</th>
<th>Exhibitor Name</th>
<th>Contact Information</th>
<th>Website</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Nano Precision Corp.</td>
<td>T:+886-3-5501995</td>
<td>www.nanoprecision-3d.com</td>
</tr>
<tr>
<td>7</td>
<td>Femto Science Inc.</td>
<td>T:+82-31-203-7066 F:+82-31-204-7063</td>
<td>www.femtoscience.co.kr</td>
</tr>
</tbody>
</table>
Map

http://www.ieee-nems2013.org/media/map.pdf

Shanghai Hongqiao Airport (SHA)
From Shanghai Hongqiao Airport to Conference Venue: 79.5 km

Shanghai Pudong International Airport (PVG)
From Pudong International Airport to Conference Venue: 56.1 km

Suzhou Industrial Park Train Station
From Suzhou Industrial Park Train Station to Conference Venue: 9.9 km

Conference Venue
Worldhotel Grand Dushulake, Suzhou

Suzhou Train Station
From Suzhou train station to Conference Venue: 18km

Suzhou North Station
From Suzhou North Station to Conference Venue: 26.7 km

Suzhou Bus Station
From Suzhou Bus Station to Conference Venue: 17.1km

Suzhou North Station
From Suzhou North Station to Conference Venue: 26.7 km

Suzhou Industrial Park Train Station
From Suzhou Industrial Park Train Station to Conference Venue: 9.9 km

Shanghai Pudong International Airport (PVG)
From Pudong International Airport to Conference Venue: 56.1 km

Suzhou Industrial Park Train Station
From Suzhou Industrial Park Train Station to Conference Venue: 9.9 km

Shanghai Hongqiao Airport (SHA)
From Shanghai Hongqiao Airport to Conference Venue: 79.5 km

Suzhou Train Station
From Suzhou train station to Conference Venue: 18km

Suzhou North Station
From Suzhou North Station to Conference Venue: 26.7 km

Suzhou Bus Station
From Suzhou Bus Station to Conference Venue: 17.1km

Suzhou Industrial Park Train Station
From Suzhou Industrial Park Train Station to Conference Venue: 9.9 km

Shanghai Pudong International Airport (PVG)
From Pudong International Airport to Conference Venue: 56.1 km

Suzhou Industrial Park Train Station
From Suzhou Industrial Park Train Station to Conference Venue: 9.9 km

Shanghai Hongqiao Airport (SHA)
From Shanghai Hongqiao Airport to Conference Venue: 79.5 km

Suzhou Train Station
From Suzhou train station to Conference Venue: 18km

Suzhou North Station
From Suzhou North Station to Conference Venue: 26.7 km

Suzhou Bus Station
From Suzhou Bus Station to Conference Venue: 17.1km

Suzhou Industrial Park Train Station
From Suzhou Industrial Park Train Station to Conference Venue: 9.9 km

Shanghai Pudong International Airport (PVG)
From Pudong International Airport to Conference Venue: 56.1 km

Suzhou Industrial Park Train Station
From Suzhou Industrial Park Train Station to Conference Venue: 9.9 km

Shanghai Hongqiao Airport (SHA)
From Shanghai Hongqiao Airport to Conference Venue: 79.5 km

Suzhou Train Station
From Suzhou train station to Conference Venue: 18km

Suzhou North Station
From Suzhou North Station to Conference Venue: 26.7 km

Suzhou Bus Station
From Suzhou Bus Station to Conference Venue: 17.1km

Suzhou Industrial Park Train Station
From Suzhou Industrial Park Train Station to Conference Venue: 9.9 km

Shanghai Pudong International Airport (PVG)
From Pudong International Airport to Conference Venue: 56.1 km

Suzhou Industrial Park Train Station
From Suzhou Industrial Park Train Station to Conference Venue: 9.9 km

Shanghai Hongqiao Airport (SHA)
From Shanghai Hongqiao Airport to Conference Venue: 79.5 km

Suzhou Train Station
From Suzhou train station to Conference Venue: 18km

Suzhou North Station
From Suzhou North Station to Conference Venue: 26.7 km

Suzhou Bus Station
From Suzhou Bus Station to Conference Venue: 17.1km

Suzhou Industrial Park Train Station
From Suzhou Industrial Park Train Station to Conference Venue: 9.9 km

Shanghai Pudong International Airport (PVG)
From Pudong International Airport to Conference Venue: 56.1 km

Suzhou Industrial Park Train Station
From Suzhou Industrial Park Train Station to Conference Venue: 9.9 km

Shanghai Hongqiao Airport (SHA)
From Shanghai Hongqiao Airport to Conference Venue: 79.5 km

Suzhou Train Station
From Suzhou train station to Conference Venue: 18km

Suzhou North Station
From Suzhou North Station to Conference Venue: 26.7 km

Suzhou Bus Station
From Suzhou Bus Station to Conference Venue: 17.1km

Suzhou Industrial Park Train Station
From Suzhou Industrial Park Train Station to Conference Venue: 9.9 km

Shanghai Pudong International Airport (PVG)
From Pudong International Airport to Conference Venue: 56.1 km

Suzhou Industrial Park Train Station
From Suzhou Industrial Park Train Station to Conference Venue: 9.9 km

Shanghai Hongqiao Airport (SHA)
From Shanghai Hongqiao Airport to Conference Venue: 79.5 km

Suzhou Train Station
From Suzhou train station to Conference Venue: 18km

Suzhou North Station
From Suzhou North Station to Conference Venue: 26.7 km

Suzhou Bus Station
From Suzhou Bus Station to Conference Venue: 17.1km

Suzhou Industrial Park Train Station
From Suzhou Industrial Park Train Station to Conference Venue: 9.9 km

Shanghai Pudong International Airport (PVG)
From Pudong International Airport to Conference Venue: 56.1 km

Suzhou Industrial Park Train Station
From Suzhou Industrial Park Train Station to Conference Venue: 9.9 km

Shanghai Hongqiao Airport (SHA)
From Shanghai Hongqiao Airport to Conference Venue: 79.5 km

Suzhou Train Station
From Suzhou train station to Conference Venue: 18km

Suzhou North Station
From Suzhou North Station to Conference Venue: 26.7 km

Suzhou Bus Station
From Suzhou Bus Station to Conference Venue: 17.1km

Suzhou Industrial Park Train Station
From Suzhou Industrial Park Train Station to Conference Venue: 9.9 km

Shanghai Pudong International Airport (PVG)
From Pudong International Airport to Conference Venue: 56.1 km

Suzhou Industrial Park Train Station
From Suzhou Industrial Park Train Station to Conference Venue: 9.9 km

Shanghai Hongqiao Airport (SHA)
From Shanghai Hongqiao Airport to Conference Venue: 79.5 km

Suzhou Train Station
From Suzhou train station to Conference Venue: 18km

Suzhou North Station
From Suzhou North Station to Conference Venue: 26.7 km

Suzhou Bus Station
From Suzhou Bus Station to Conference Venue: 17.1km

Suzhou Industrial Park Train Station
From Suzhou Industrial Park Train Station to Conference Venue: 9.9 km

Shanghai Pudong International Airport (PVG)
From Pudong International Airport to Conference Venue: 56.1 km

Suzhou Industrial Park Train Station
From Suzhou Industrial Park Train Station to Conference Venue: 9.9 km

Shanghai Hongqiao Airport (SHA)
From Shanghai Hongqiao Airport to Conference Venue: 79.5 km

Suzhou Train Station
From Suzhou train station to Conference Venue: 18km

Suzhou North Station
From Suzhou North Station to Conference Venue: 26.7 km

Suzhou Bus Station
From Suzhou Bus Station to Conference Venue: 17.1km

Suzhou Industrial Park Train Station
From Suzhou Industrial Park Train Station to Conference Venue: 9.9 km

Shanghai Pudong International Airport (PVG)
From Pudong International Airport to Conference Venue: 56.1 km

Suzhou Industrial Park Train Station
From Suzhou Industrial Park Train Station to Conference Venue: 9.9 km

Shanghai Hongqiao Airport (SHA)
From Shanghai Hongqiao Airport to Conference Venue: 79.5 km

Suzhou Train Station
From Suzhou train station to Conference Venue: 18km

Suzhou North Station
From Suzhou North Station to Conference Venue: 26.7 km

Suzhou Bus Station
From Suzhou Bus Station to Conference Venue: 17.1km

Suzhou Industrial Park Train Station
From Suzhou Industrial Park Train Station to Conference Venue: 9.9 km

Shanghai Pudong International Airport (PVG)
From Pudong International Airport to Conference Venue: 56.1 km

Suzhou Industrial Park Train Station
From Suzhou Industrial Park Train Station to Conference Venue: 9.9 km

Shanghai Hongqiao Airport (SHA)
Direction
http://www.ieee-nems2013.org/media/map.pdf

Go To Suzhou

International Airport: Suzhou does not have its own international airport at present. It is best to use the airports of nearby Shanghai. Shanghai Hongqiao International Airport (SHA) and Pudong International Airport (PVG) are used frequently by domestic and international visitors.

- **Hongqiao Airport (SHA)**, is 86 kilometers (about 53 miles) away from Suzhou. Upon arrival, passengers could walk to the connected Shanghai Hongqiao Railway Station, and then take a bullet train to get to Suzhou in 30 minutes. Then please follow the guide of ‘how to reach Worldhotel Grand from Suzhou railway stations.’

- **Pudong International Airport (PVG)**, is located 120 kilometers (about 65 miles) away from Suzhou. There are scheduled airport shuttle buses running to Suzhou, and vice versa. Please follow the sign “Long Distance Bus” to the bus station, where you can find the shuttle bus parking lots, at the 2nd floor of PVG’s terminal building. Operating Time: 10:00 10:40 11:10 11:40 12:10 12:40 13:10 13:50 14:20 14:50 15:20 16:10 16:50 17:20 18:10 18:50 20:00. Durations: 3 hours; Ticket Fare: RMB 84.

When you arrive in Suzhou, please inform the driver you would like to get off at ‘SIP’. (The other get off position is in downtown Suzhou, which would be farther from the conference venue). After get-off you can take a taxi to go to Worldhotel Grand. It will take about 20min and RMB 45.

In Suzhou: The Way from Railway Station to Conference Venue

1) From Suzhou Train Station:
 - Taxi about 30 minutes, RMB 60.
 - Bus:‘Fast Line No.2 Bus’, Get Off At‘ Dushulake Library’，Change No.‘156’ or ‘176’ Bus, Get Off At ‘Dushulake Gymnasium’, then walk about 500m to arrive at the hotel about 1 hour’s drive.

2) From Suzhou industrial Park Train Station:
 - Taxi about 15 minutes, RMB 35.
 - Bus:No.‘115’, Get off at‘Olive Bay’，Change No.‘156’ or ‘176’ Bus, Get Off at ‘Dushulake Gymnasium’, then walk about 500m to arrive at the hotel about 1 hour’s drive.

3) From Suzhou North Station: Taxi about 50 minutes, RMB 100.
Hotel Information

http://www.ieee-nems2013.org/hot.html (Online Booking and Information)

Note: Notice to attend IEEE_NEMS 2013, Send the email within valid date.

<table>
<thead>
<tr>
<th>Hotel Name</th>
<th>Information</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Worldhotel Grand Dushulake Suzhou (Conference Venue) (Add: No.299 Qiyue Street industrial Park) (the North of Dushulake Yueliangwan) ★★★★★</td>
<td>Tel: +86 512 69568888 , 71326/71321 Email: reservations@worldhotelgranddushulake.com PS: Foreign Guest please scan two sides of credit card in Email.</td>
<td>0km</td>
</tr>
<tr>
<td>Four Points By Sheraton Suzhou (Add: No.8 Dushulake Yueliangwan Road industrial Park) (Near Dushulake) ★★★★★</td>
<td>Tel: +86 512 6799 7999 Email: reservation.suzhou@fourpoints.com</td>
<td>0.5km</td>
</tr>
<tr>
<td>Jinling Guanyuan International Hotel Suzhou (Add: No. 168 Cuiwei Street industrial Park Suzhou) ★★★★★</td>
<td>Tel: +86 512 62608888 Email: sales2_jinlingsz@vip.sina.com</td>
<td>1.0km</td>
</tr>
<tr>
<td>Home Inn (Suzhou Park Nanometer biological area) (Add: No.218 Xinghu Street)</td>
<td>Tel: +86 512 6281 1999/9</td>
<td>1.7km</td>
</tr>
<tr>
<td>F loft Hotel Suzhou (Add: 3rd Floor1-A Area Creative Industry Park No.328 Xinghu Street industrial Park) ★★★</td>
<td>Tel: +86 512-62925300 Email: huisuo@sistm.com.cn</td>
<td>1.8km</td>
</tr>
<tr>
<td>Jingzhai Hotel Suzhou (Add: No. 158 Ren'ai Road industrial Park) ★★★★</td>
<td>http://www.jingzhaihotel.com/ Tel: +86 512 62601999-8855 Email: 15151414195@139.com</td>
<td>2.5km</td>
</tr>
<tr>
<td>Xi'an Jiaotong Liverpool International Conference Center (Add No. 99 Ren'ai Road industrial Park Suzhou) ★★★★★</td>
<td>Tel: +86 0512 8666 5555 Email: hongweiita@hotmail.com</td>
<td>3.1km</td>
</tr>
</tbody>
</table>
Travel Information

1) The Tiger Hill
Lying to west of the ancient city of Suzhou with a history of over 2,500 years, the Tiger Hill has the reputation of being No.1 sight of Wu region. “It would be a loss if you miss the Tiger Hill in your visit to Suzhou”(Su Dongpo).

2) Suzhou Museum
Founded in 1960 and originally located in the national historic landmark, Zhong Wang Fu palace complex, Suzhou Museum has been a highly-regarded regional museum with a number of significant Chinese cultural relics.

3) Ligongdi
Technical Tour

Nanopolis Suzhou

The Nanotech Commercialization Hub in China Suzhou has been designated by the Ministry of Science and Technology (MOST) as the ‘China International Nanotech Innovation Cluster (CHInano)’. SIP launched the ‘Nanopolis Suzhou’ initiative to provide a complete ecosystem support for the growth of nanotechnology and its enabling industries. The industry areas of focus include micro and nano-manufacturing technologies, energy and green technologies and nano medicine. Suzhou intends to attract over 200 nanotech companies from all over the world and 10,000 nanotech experts within the next 5 years to make Suzhou the most global and innovative nanotech hub in China by 2015.

SINANO, CAS

Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO) is a joint venture between Chinese Academy of Sciences and Jiangsu local government, with emphasis on applied research to help local industry and boosting local economy. It has 7 research divisions focusing on nanomaterials and devices, nanobiotechnology, printable electronics as well as other interdisciplinary fields. In addition, there are two facilities specialized for micro/nanofabrication and characterization/metrology with over $15 millions of equipments, which are fully open to outside users. SINANO also established wide international collaborations with research groups from US, Germany, Russia, Canada, Japan, Finland, Singapore, Hong Kong and many others regions or countries.

SVG Optronics

As the pioneer in the advanced micro/nano manufacturing, including UV laser maskless lithography, nano-patterning systems and roll-to-roll nano-imprinting technologies, SVG Optronics has established the capabilities in the functional micro-nano devices and optical films, such as ultra-thin light guide plates, large size touch panel sensors, 3D imaging, microlens array films and no-ink nano-printing, as well as the nano-light trapping and plasmonic technologies for improving LED's efficiency. SVG Optronics is a stock company in Shenzhen Stock Exchange, code: SZ300331, on June.28, 2012.
Contact Information

Conference Secretary

E-mail: IEEENEMS2013@Gmail.com
Phone & FAX: +86-10-62767742
Postal Address: IEEE-NEMS 2013 Conference
 Address: Micro&Nanoelectronics Building, Room 319
 Department of Microelectronics, Peking University
 Haidian District, Beijing, China, 100871

Conference Venue

All sessions will be held at Dushu Lake Hotel
Address: No.299 Qiyue Street, Suzhou Industrial Park (the North of Dushulake Yueliangwan)
Suzhou, China
Tel: +86 512 69568888 -71326/71321

Electricity

The electric current used in China is 220V 50Hz. The hotels can provide 220V power outlets. Please note that plug adapters may be necessary.

Dialing Codes

China International Country Code: +86
Suzhou’s Local Area Code: 512
The 8th Annual IEEE International Conference on
Nano/Micro Engineered and Molecular Systems
April 7-10, 2013, Dushu Lake Hotel, Suzhou, China

MEMS JOURNAL

The Largest MEMS Publication in the World

- Founded in 2003
- 28,700+ subscribers
- Comprehensive MEMS news coverage
- 7-14 MEMS and microsystems stories every week
- MEMS webinars, whitepapers and presentations
- Interviews with MEMS industry leaders
- Latest MEMS patents and patent applications

MEMS Journal, Inc.
2000 Town Center, Suite 1900, Southfield, Michigan 48075
Phone: 734.277.3599 / Fax: 734.239.7409
http://www.memsjournal.com
http://www.memsjournal.com/subscribe.htm
Micro & Nano Letters

Editors-in-chief, Gwo-Bin Vincent Lee & Peter Dobson

Rapidly delivering concise research papers spanning micro and nanoscale science, engineering and technology.

Submit your expanded NEMS 2013 paper to a special issue of Micro & Nano Letters.
See www.ieee-nems2013.org for more details.

The Institution of Engineering and Technology is registered as a Charity in England & Wales (no 213974) and Scotland (no SC039039).
The IET, Maxwell Building, 10 Euston Road, Milton Keynes, MK9 1EA, UK.
Important Dates

- **September 15, 2013:** Paper submission (2-6 pages)
- **October 31, 2013:** Notification of acceptance
- **December 15, 2013:** Submission of final full paper
- **December 31, 2013:** Early bird registration deadline

1. To qualify for best paper contests, a submission must be from 4 to 6 pages.
2. To be included in IEEE Xplore database, a paper must be from 4 to 6 pages.

General Chair: Wen J. Li, City University of Hong Kong, Hong Kong
General Co-Chair: Vincent G.-B. Lee, National Tsing Hua University, Taiwan
Technical Program Chair: Eric P. Y. Chiou, UCLA, USA
Organizing Chair: Aaron T. Ohta, University of Hawaii, USA

General Conference Info

The IEEE-NEMS is a key conference series sponsored by the IEEE Nanotechnology Council focusing on advanced research areas related to MEMS, nanotechnology, and molecular technology. Prior conferences were held in Suzhou (China, 2013), Kyoto (Japan, 2012), Kaohsiung (Taiwan, 2011), Xiamen (China, 2010), Shenzhen (China, 2009), Hainan Island (China, 2008), Bangkok (Thailand, 2007), and Zhuhai (China, 2006). For the first time, the conference will be held outside Asia. The conference typically has ~350 attendees with participants from more than 20 countries and regions world-wide.

Hawaii, USA
April 2014