

『開会挨拶』 および 『C.N.を目指す社会に向けた 学術会議制御・パワー工学分科会の活動報告』

中川 聡子

(東京都市大学名誉教授,日本学術会議会員,電気学会 元会長)

講演内容

0. はじめに (開会ご挨拶)

I. 日本学術会議について

- (1)日本学術会議とは
- (2)2022年における国際活動の中から
- (3)C.N.の実現に向けた動きと連携の必要性

II. 日本学術会議 制御・パワー工学分科会の活動

- (1)メンバー構成
- (2)分科会会合で議論したテーマ (講演順)
- (3)学術会議『C.N.に関する連絡会議』への参画
- (4) C.N.に対するそれぞれのスタンス
 - ①日本学術会議C.N.連絡会議が示した俯瞰図~~全体像をとらえる視点~~
 - ②電気学会が公開したC.N.の活動~~電気の専門家集団による視点~~
 - ③日本学術会議制御・パワー工学分科会が考えるC.N.への寄与~~4つの視点~~
- (5)本日のシンポジウムの概要

III. おわりに~~私からの夢も紹介~~

- (1)今後のC.N.技術への期待
- (2)ファンタジーからのCCUS

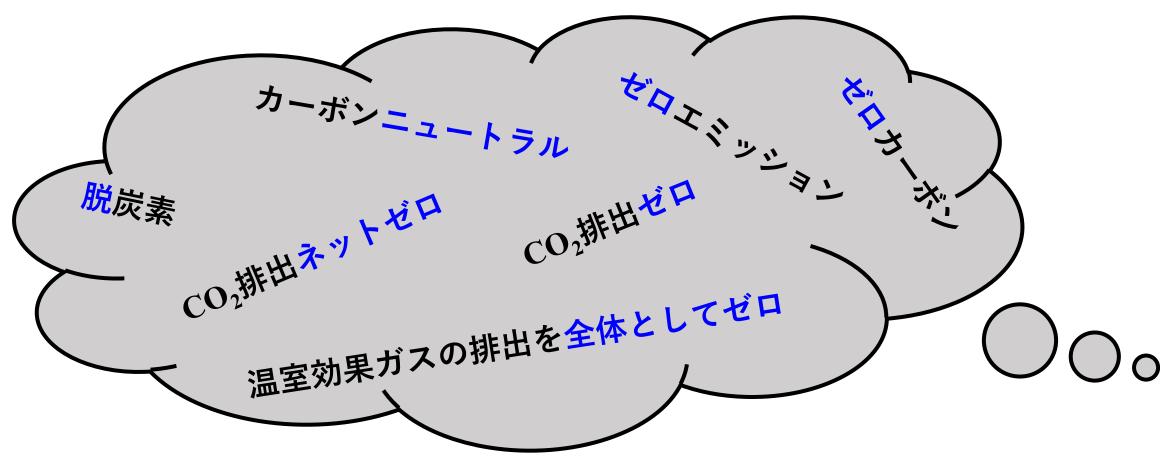
*本資料内では,「いらすとや」のサイトから 無料D.L.フリーのイラストを使用させて 頂きました.

I. 日本学術会議について

(1) 日本学術会議とは

内閣府に属する組織.第一部~第三部に区分.理工学系は第三部. 会員(非常勤国家公務員特別職)が210名, 連携会員(非常勤国家公務員)が約2000名の機関.

役割; ①政府・社会に対し、科学者の意見を提言. ②社会との対話を通じ、科学への理解を啓発.


- ③地域社会の学術振興や学協会の機能強化に貢献.
- ④アカデミアの機関として国を代表し 国際交流.
- (2) 2022年における国際活動の中から (以降, カーボンニュートラルをC.N.と記す) **例) C.N.に関わるもの**
 - ①Science7 Dialogue Forum 2022 日時: 2022年5月31日 開催地:ベルリン 梶田会長が参加. 脱炭素化に関する声明を発表
 - ②ネットゼロに関する科学技術対話 日時:2022年11月3日 開催地:日本 英国王立協会が来日.ネットゼロ達成に向けて,今後の研究・協働に関し, 学術会議が国のアカデミアを代表して対応

(3) C.N.の実現に向けた動きと連携の必要性

巷にはC.N.に係るWordが溢れています・・・・・

現在も「**脱炭素とは"二酸化炭素の排出量をゼロ**"にする取組み」と定義されているものがあったり、太陽光発電では、エネルギー: \mathbf{Wh} と 出力: \mathbf{W} が混用されたり、

「BEV(バッテリーEV)やFCV(燃料電池車)等は CO_2 排出ゼロだ!」として"Well to Wheel"のプロセス全体の CO_2 排出量(現状の電源構成に依存)の評価がないことがあり、曖昧さが散見.

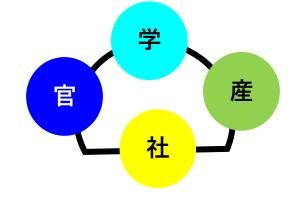
国の目標:「2050年にC.N.社会の実現をめざす」菅・前首相の宣言.

「2030年には,2013年度の CO_2 排出値から46%削減することを目指し, さらに50%の高みに向けて挑戦を続ける」

1.5度の約束: 2021-G7サミット(2021年6月)では、産業革命以前より世界の平均気温の上昇を1.5度までに抑えること(すでに**残り0.4度**の現状)

2050年C.N.実現には:社会のあらゆる領域において、素早い変革が必要.

そのため



- ①最新の科学による技術革新とその普及
- **②人々**に行きわたる**政策**の導入
- **③投資の拡大**(Green投資や人への投資)

→ <mark>学・産・社</mark>

→ <mark>社・</mark>官

→ <mark>官・産・学・社</mark>

すなわち

<u>社会の正しい理解と同意と協力</u>を得た上での<mark>学・産・</mark>官の連携・協働が重要

C.N.達成には その先に

国際的で地球規模のMovementが必要!

II. 日本学術会議 制御·パワー工学分科会の活動

第25期:2020年10月~2023年9月. これまでに7回の分科会を開催するなど,意欲的に活動.

<u>『電気を作る・貯める・送る・活かす』に関わる課題を包括的に扱う点において,</u> 日本学術会議で**唯一の分科会.電気エネルギーの視点**で活動を展開中.

(1) メンバー構成(15名)

*敬称略

	中川聡子 熊田亜紀子	東京都市大学 東京大学	副委員長 幹事	岩崎 誠 千住智信	名古屋工業大学 琉球大学
委 委 委 委 委 委 員	金子 井村順一 金子成彦 仙石正和 藤﨑泰正 山中直明	名城大学 東京工業大学 早稲田大学 事業創造大学院大学 大阪大学 慶応義塾大学	委委委委委	三瓶政一 大崎博之 河村篤男 永井正夫 堀 洋一	大阪大学 東京大学 横浜国立大学 東京農工大学 東京理科大学

分科会ゲスト (2回招待) 横山明彦 東京大学

本シンポジウム登壇ゲスト

圓浄加奈子 電気新聞社

佐藤育子 東電パワーグリッド(株)

(2)制御・パワー工学分科会会合で議論したテーマ(講演順)2020年10月から現在までの間

*;ゲスト

<u> </u>	ייי יוען ניוו	<u> </u>
回	委員	話題提供テーマ
第1回	中川聡子	電力の安定供給と災害時の電気自動車への期待
第1回	永井正夫	電動車に関わる動向
第2回	三瓶政一	5Gの動向,B5G実現に向けた流れ
第2回	堀 洋一	100年後のクルマ ~モータ/キャパシタ/ワイヤレスへのパラダイムシフト~
第2回	山中直明	電力コントロールへの最先端ICT応用~EVNO:新しい仮想電力網~
第3回	横山明彦*	2050年カーボンニュートラルへ向けた電力システムの運用・制御における取り組み
第3回	金子成彦	病院建物を対象とした自家発電機導入計画立案支援ツール
第3回	河村篤男	変換効率99.9 %インバータ 実証への挑戦とその波及効果
第4回	千住智信	カーボンニュートラルの現状と沖縄における取組
第4回	仙石正和	学術会議での提言(見解)・報告の経験から
第4回	中川 聡子	学術会議における制御パワー分科会からの意見の表出について
第5回	井村順一	太陽光発電のSmart基幹電源化~調和型電力Energy Management Systemのための理論構築
第5回	金子 真	赤血球操作マジックとミステリアス現象
第6回	熊田亜紀子	直流絶縁および遮断技術の開発動向
第6回	岩崎 誠	産学連携に基づく様々なメカトロニクス機器の高機能制御
第6回	大崎博之	ゼロエミッション航空機のための電動化技術・超電導技術
第7回	藤﨑泰正	マルチエージェントシステムの分散協調制御
第7回	シンポ登壇者	シンポジウムの講演内容の最終確認

(3) 学術会議『C.N.に関する連絡会議』への参画(学術会議の82の委員会・分科会等が参画)

- 1) 第1回会合(R3年9月16日)での講演からのメモ
 - ・IPCC (気候変動に関する政府間パネル) 第6次評価報告書の解説(江守正多連携会員)
- 2) 第2回会合(R4年6月21日) C.N.に関する関連省庁との懇談からのメモ
 - ① **文部科学省**(研究支援と人材育成がC.N.にとって重要) C.N.の実現に向けた文科省研究開発関連令和4年度予算額中
 - ・次世代半導体集積回路、・革新的パワエレ、・革新的材料、・次世代航空技術、
 - ・蓄電・水素・燃料電池・太陽電池 等の合算は約85億円(他に原子力関連は約310億円)
 - ② 経済産業省(エネルギー安全保障を確保した上での脱炭素加速)

例:グリーンイノベーション(G.I.)基金プロジェクト(R4年6月時点)において

- ・次世代洋上風力,・太陽電池,・水素生成,・Smart Mobility,・デジタルインフラ 多くの
- ・電動航空機、・次世代船舶、・EV省エネ車載機器のシミュレーション
- ・次世代電池・モータ 等の合算は約7500億円(以上,審査中含) (一方,2050年C.N.達成には,10年間で150兆円規模の投資が必要とされている)
- ③ 環境省(エネルギー,産業,運輸,地域・くらし,吸収方策DACCSなどへの支援) 『電気』系の取り組み例:
 - ・太陽光発電設備,・PPA支援,・急速充電設備拡充,・EVおよび蓄電池導入等
 - ・HEMS, V2H, 交通データなどをDX + AI技術で構築(一方, 建築系ではZEB/ZEH等)

(4) C.N.に対するそれぞれのスタンス

①日本学術会議C.N.連絡会議が示した俯瞰図~~全体像をとらえる視点~~

~~日本学術会議C.N.連絡会議(第2回 2022年6月21日開催)公開資料をもとに加筆して作成~~

A) 地球・気候変動・気象・災害関係 (状況把握)

気候システムの解明・観測・予測・気候変動の影響 成層圏・対流圏 温度計測 観測プラットフォームシミュレーション・予測 海洋酸性化・ブルーカーボン 地球温暖化 激甚災害 食料安全保障 土地利用・土地利用変化・林業 地球環境観 プラネタリ・バウンダリ

F) C.N.との トレードオフと相乗効果 (影響度)

生物多様性保存 資源・材料の循環利用 大気汚染 健康・公衆衛生 安全・安心・レジリエンス 社会的受容

E) 包括的アプローチ, ビジョン, 社会変革, 制度設計・政策, 企業活動, 人間行動

フューチャーアース 環境学・環境教育 **技術的開発戦略 社会・経済ビジョン 世界と日本の施策** サーキュラーエコノミー グリーンフレーション 循環デザイン **制度設計・法・政策** 企業行動・組織運営 企業倫理・社会責任投資 経済的手法(税・排出権取引) 土地・国土 国際ガバナンス 人間行動・行動変容 生活デザイン 社会変革・合意形成

B) エネルギー分野

(1次・2次エネルギー)
エネルギーのポートフォリオ 電気・電力
風力・太陽光 原子力 水素 バイオマス
アンモニア・メタネーション
未利用熱エネルギ

C) 特定分野のC.N.化の取組み

食料・食料生産流通・フードシステム・食品ロス 医療・ 歯科 **材料・素材 生産・ものづくり 自動車・鉄道** 情報・通信・コンピュータ 海洋・船舶・航空・宇宙 住宅・建築・都市 カーボンフットプリント

D) C.N.のための学術/テクノロジー開発

炭素吸収固定 排出削減 緩和策 経営・金融 材料・素材 大規模施設 電力系統のシステム制御 オープンサイエンス システム・シミュレーション・可視化 ジオサイエンス 物理・化学・数理科学等

太字: 当分科会メンバーがC.N.と大きく関わると考えるキーワード

②電気学会が公開したC.N.の活動~~電気の専門家集団による視点~~

電気学会のHP https://www.iee.jp/about/cn-initiative/ D.L.フリー

- 2021.7月大崎会長演説 「連携と総合力でグローバルな課題に取り組む! ポストコロナ社会での活動とカーボンニュートラルへの貢献
概要;電気が寄与できる分野(電力や運輸部門でのR & D. 産業や民生部門での回転機, パワエレ, モータドライブ, LED, 家電, スマートシティなど)2021.8.25B部門大会 パネルD.「デジタル化が切り拓く2050年カーボンニュートラル 電力・エネルギー部門の挑戦
概要;脱炭素社会実現にむけた電力と他部門とのセクターカップリング, それらを繋ぐ鍵としての『デジタル化』2021.8.27東京支部カンファレンス 特別講演 「脱炭素社会における住宅・建築・都市」 特別講演のため資料なし2021.9.3D部門 スマートファシリティ研究会「カーボンニュートラルの実現に向けたスマートファシリティ」 詳細の記述無し2021.10月A部門「カーボンニュートラルに向けたエネルギー変換システムの磁気応用技術調査専門委員会」設置
- 趣旨概要;C.N.に向けたエネルギー変換機器の効率化、磁気応用技術、機器設計、回路・制御技術・解析・センシング技術など
- 2021.10.21 D部門スマートファシリティ研究会「脱炭素社会2050年を実現するための需要家電力資源を利用したエネルギー」
 Keywords;ながら充電, C.N.に向けた需要家電力資源の活用, エネルギーサービス, コジェネ, アグリゲーション, C.N.を目指す電力システム像など
 2021.12.15 産業応用フォーラム「次世代自動車用車載・インフラ電源システム」
- Keywords; 自動車電源, パワエレ技術, 給電システム, 電池と制御技術, 電池のリユース・リサイクル, 業務用電動車, V2Gなど 2022.3.15 日本機械学会誌(電気学会合同企画)「カーボンニュートラルへの道・・省エネの視点から・・」
- 2022.3.15 日本機械学会誌(電気学会合同企画)「カーボンニュートラルへの道・・省エネの視点から・・」 Keywords;省エネ分野の取り組み、省エネ技術、ICTと省エネなど
- 2022.3.21 全国大会 シンポジウムH1 研究・イノベーション学会との連携企画「2050年カーボンニュートラルを達成するためには- 欧米および日本の政策動向から イノベーションを社会実装するための道筋を考える - 」 Keywords;日本のR&D, エネ循環とモノ循環, 科学技術イノベーション政策の視点 全国大会 シンポジウムH4 再生可能エネルギー大量導入に伴う系統慣性低下に対応するための技術開発成果- NEDO「再生可能エネルギーの大量導入に 向けた次世代電力ネットワーク安定化技術開発事業」 Keywords;NEDO, 系統慣性等の把握技術, 慣性力等を備えた制御技術

全国大会一般セッションH5 「IoE社会のエネルギーシステムのグランドデザイン「再エネ主力電源化に向けたパワーエレクトロニクス技術への期待」 Keywords; 2050年のエネルギーシナリオ,エネルギー貯蔵装置最適導入量,地域エネルギーシステムデザイン,パワエレ技術,コストなど

全国大会 一般セッションH6 「カーボンニュートラル時代の電力需給解析」

Keywords;太陽光発電出力予測誤差解析,送電網における投資や最適運用,調整力の効果比較,解析結果活用事例など

全国大会 一般セッションS7 「小型モジュール原子炉(SMR)・新型炉の現状と今後の展望」

Keywords;新型炉(高速炉?),高温ガス炉,脱炭素に向けた新型炉,小型炉など

全国大会 一般セッションS16「エネルギー・リソース・アグリゲーション・ビジネス拡大に向けた取り組みカーボンニュートラルに向けた 需要家電力資源の活用拡大 」 Keywords;スマートグリッド,サービス,ユースケース,市場売買,DER, VPP, IEC 61850,セキュリティなど

2021年8月~2022年3月までの活動から抜粋

<u>C.N.に関わる多数の注目ワード</u>:スマートシティ,スマートファシリティ,エネルギー変換機器,アグリゲーション,スマートグリッド,DER, VPP, DR, PPA, NEV,電池リサイクル/リユース,送電網投資,系統制御,Innovation,R&D,SMR,高温ガス炉,新型炉,・・

③日本学術会議 制御・パワー工学分科会が考えるC.N.への寄与~~4つの視点~~

国際情勢・エネルギー安全保障・・・種々山積する中で C.N.に向け電気技術者が寄与できること

視点④;CO₂を減らそう・消そう! 視点①;そもそもの消費を減らそう ④システムのCO。排出削減技術に寄与 ①機器類の省エネ設計技術に寄与 全電気エ 省エネ 緑化など 排出削減 一酸化炭素側 必要とされる 分 (省エネ分) 電気エネルギー 排出削減 太陽光 (再エネ・水力・ 回収・貯留 <電源構成> 風力等 原子力増強分) および産業 ・再エネ(太陽光・ 風力・地熱・・) 利用 側 水力 ・化石燃料(石炭・ 火力によるCO2 吸収 &再エネ・水力 石油・LNG) 原子力 ・原子力にも ・水力 発生するCO。 ・原子力 緩和策」 火力 炭素クレジット ばかりに **CCUS** 目がいくが ②再エネ導入等による蓄電及び 適応策」 ③電力を有効に利活用して社会課題解決に 電力系統制御技術への寄与 寄与(Innovation/R&D推進) としての 寄与も重要 視点②;気紛れ再エネを上手く使おう! 視点③;使うからには使い倒そう!

<本日のシンポジウムの構成>

4つの視点

視点1

そもそもの消費を減らそう! 省エネ設計

視点2

気紛れ再エネを上手く使おう! 蓄電と系統制御

視点3

使うからには使い倒そう! 社会課題解決への効率的電力利用

視点4

CO₂を減らそう・消そう! GX・ESG投資・CCUS・炭素クレジット

第一部 〜講演〜 〜わかり易く解説〜	第二部 〜P.D.〜 〜夢を語る〜
視点1 大崎博之先生	佐藤育子 氏
治上。 #.1.四本化化	永井正夫先生
視点2 横山明彦先生	山中直明先生
視点3 岩崎誠 先生	千住智信先生
	河村篤男先生
全体説明+視点4	

中川聡子

圓浄加奈子氏

(5) 本日のシンポジウムの概要

<シンポジウムの構成>

シンポジウム第1部;電気エネルギーやC.N.に係る電気技術をわかりやすく解説

シンポジウム第2部;C.N.社会に向け,未来社会への夢を語る

全体を通じての思い;新たなものを生み出そうという気概をもって、

ゲームチェンジャーたりうるR&Dの推進やInnovationの創出を目指せ!

講演 制御・パワー工学分科会の活動 第1部

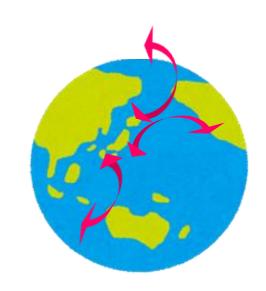
座長:熊田亜紀子

*:ゲスト

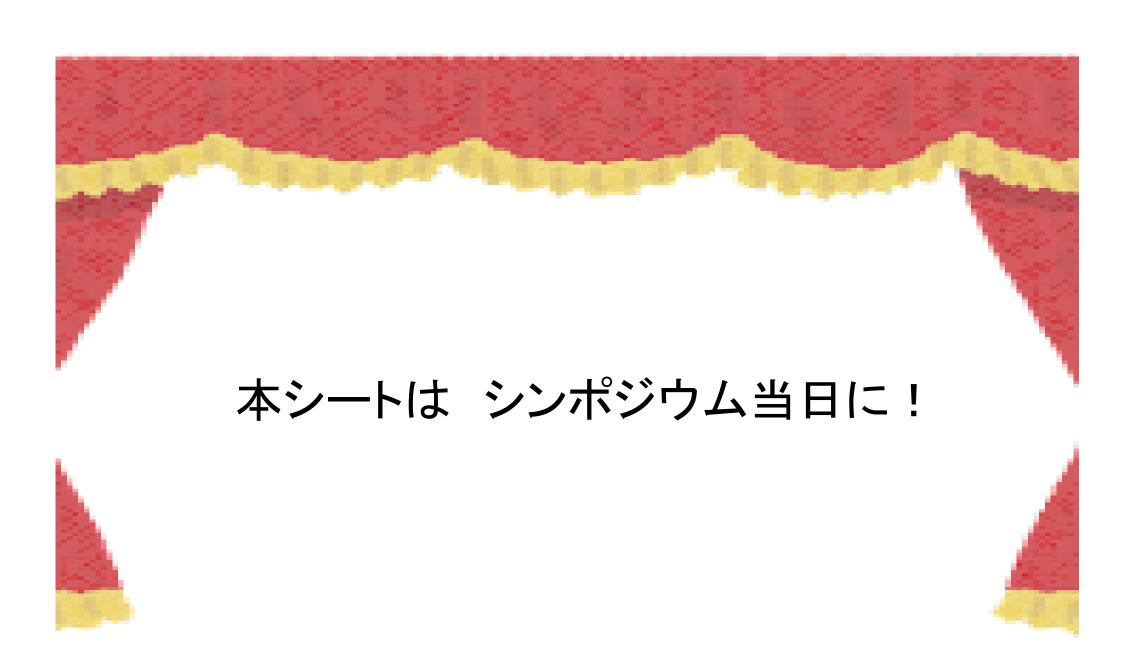
中川聡子	『開会挨拶』『C.N.を目指す社会に向けた学術会議制御・パワー工学分科会の活動報告』
大崎博之	『機器・システムの省エネ設計に向けた技術的寄与』
横山明彦*	『再エネ導入による電力系統の諸問題に対する技術的寄与』
岩崎誠	『エネルギーの有効活用による社会課題解決に向けた技術的寄与』

パネルディスカッション C.N.社会に『電気』が拓く夢を語る 第2部

河村篤男	『パネルディスカッション趣旨説明』
佐藤育子*	『DER活用による次世代電力ネットワーク』
永井正夫	『自動車の電動化による次世代モビリティと変容する社会』
山中直明	『Small-Mobility=バッテリーがつくる豊かな暮らし』
千住智信	『電気と食料が田園都市で生産される社会を目指して』
河村篤男	『パネル趣旨説明』『高効率電力変換器が拓く電力化社会の夢:直流配電・再生可能電力貯蔵』
圓浄加奈子*	『高校生による「2050年社会課題解決ピッチ」の現場から』


III. おわりに ~~私からの夢も紹介~~

(1) 今後のC.N.技術への期待


- ・「公助・共助・自助」の「自助」に注目.「"地"産"地"消」から「**"自"産"自"消**」への視点も! (災害対策やリスク分散の観点.HEMS, PPAモデルなど)
- ・「電気は生もの、作りたてを使え!」
 - →「余った食料は急速冷凍で欲しいときにレンチン時代!」 気紛れ再エネを捨てないための
 - ライフサイクルで考えた蓄電技術の開発に期待.
- ・地球は丸い.余った電気は,**昼夜逆**や**夏冬逆**の国との融通も!世界規模での時間軸・季節感で考える (長距離ロスレス高圧DC送電技術?)

・CCUSへの期待

野に放たれた \mathbf{CO}_2 が 地球に『悪さ』をしないよう \mathbf{O}_2 の \mathbf{O}_2 が 地球に『悪さ』をしないよう \mathbf{O}_2 の \mathbf{O}_2 の \mathbf{O}_3 の \mathbf{O}_3 \mathbf{O}_3 0の \mathbf{O}_3 0 $\mathbf{O$

(2) ファンタジーからのCCUS(視点④のCO₂を減らそう・消そう!)

