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Second page, left, Eq. (5). 𝜓𝑐0 = 𝑘𝜓𝜀0 𝜓𝑐0 =
1

𝑘𝜓𝜀0

Second page, left, 12th and 13th

lines from the bottom.

amplitudes AIR-ori, as shown in Eqs. (11) and

(12). cρ and ψ’c0-αp of τ are determined using βir.

amplitudes AIR-ori and influenced on 𝜆′𝑐 + 𝜆′𝑟 (Eqs. (11) and (12)). 

Second page, left, Eqs. (10) –

(12).
∆𝐼𝑅𝑜𝑟𝑖 = 6𝐴𝐼𝑅−𝑜𝑟𝑖

2𝑣𝑒𝑖𝑔𝑒𝑛𝑣

𝐼𝑅𝑜𝑟𝑖 = 𝐴𝐼𝑅−𝑜𝑟𝑖
2𝑣𝑇

2, ∆𝑉 = 1             (10)

𝛽𝑖𝑟 =
3ℎ′𝑚 1−𝜆′𝑐−𝜆′𝑟

16𝜋4𝑟1
6𝑀𝐴𝑖

2𝑣𝑒𝑖𝑔𝑒𝑛𝑘𝜓𝜀0
=

𝐴𝐼𝑅−𝑜𝑟𝑖
2

2𝜋2𝑀𝐴𝑖
2     (11)

𝐴𝐼𝑅−𝑜𝑟𝑖 =
ℎ′𝑐𝜌

6𝜏𝑣𝑒𝑖𝑔𝑒𝑛
                                      (12)

∆𝐼𝑅𝑜𝑟𝑖 = 12𝜋2𝑘𝐴𝑞
2 𝑞2𝐴𝐼𝑅−𝑜𝑟𝑖

2𝑣𝑒𝑖𝑔𝑒𝑛𝑣

𝐼𝑅𝑜𝑟𝑖 = 6𝜋2𝑘𝐴𝑞
2 𝑞2𝐴𝐼𝑅−𝑜𝑟𝑖

2𝑣𝑇
2, 𝑉 = 1 (10)

𝛽𝑖𝑟 =
3ℎ′𝑚 1−𝜆′𝑐−𝜆′𝑟

16𝜋4𝑟1
6𝑀𝐴𝑖

2𝑣𝑒𝑖𝑔𝑒𝑛𝜓𝑐0
=

∆𝐼𝑅𝑜𝑟𝑖

∆𝐸
=

𝑘𝐴𝑞
2 𝑞2𝐴𝐼𝑅−𝑜𝑟𝑖

2

𝐴𝑖
2𝑀

             (11)

𝐴𝐼𝑅−𝑜𝑟𝑖 =
1

2𝜋

ℎ′𝑐𝜌

3𝜏𝑣𝑒𝑖𝑔𝑒𝑛
=

1

4𝜋2𝑟1
3𝑘𝐴𝑞𝑞

3𝑚ℎ′𝑘𝜓𝜀0 1−𝜆′𝑐−𝜆′𝑟

𝑣𝑒𝑖𝑔𝑒𝑛
(12)          

Third page, right, the label of 

vertical axis in Fig. 6 (b).

ΔAi / Aeigen,
P' / P'eigen (10^5m)

ΔAi / Aeigen,
P' / P'eigen

Third page, right, 13th line from 

the bottom.

Ions Nre accepted large P’, retaining vibration

states

Ions Nre accepted large P’ and became standby release ions

retaining vibration states

1

(2024 IEEJ, Annual Conference of PE)

Note; this first page indicated 8-6-17 page.
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Fourth page, 

right, legend 

in Fig.12.

Φ OH-before Φ OH-after

Fourth page, 

right, Fig.11 

and Fig.13.

Fifth page, 

left, 16th –

19th line from 

the top.

Ion spins were generated by the unbalanced location of

electrical charge because ion comprised elementary particles,

at the same time as ion SHM, referencing Section 2.2 of the

paper (2). First, as mentioned in Section 7.2, the SHM of a

released ion was influenced by ion spins alone, and its Ai was

prevented by spins. ・・・. Next, spin radii rt was fixed,

and the ω of spins resonated with the vT of SHM.

Ion spins were generated by the unbalanced location of

electrical charge because ion comprised elementary particles, at

the same time as ion SHM. Ion spins comprising two axes in 3D

motion received and emitted IR energy, referencing Section 2.2

of the paper (2). First, as mentioned in Section 7.2, the SHM of a

released ion was influenced by ion spins alone, and its Ai was

prevented by spins. ・・・. Next, spin radius rt was fixed,

and the ω of spins resonated with the vT of SHM.

Sixth page, 

right, legend 

in Fig.22.

rdent=1.38*10^-9m
Aeigen=3.66*10^-12m
veigen=1.85*10^13Hz

B=10000, Limitedγr=1.117

rdent-after=1.38*10^-9m
Aeigen=3.66*10^-12m
veigen=1.85*10^13Hz

B=10000, Limitedγr=1.117
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Seventh page, 

right, 8.3. 

Invisible 

energy of Ai 

preventions.

The Ai prevention energy was denoted as ∆𝐸𝑝𝑟𝑒𝐴𝑖 that

energy transfer from a portion of ΔEother to ΔESHM was used

in the simulations. However, ∆𝐸𝑝𝑟𝑒𝐴𝑖 was not actually

present (Eq. (75)). ・・・. Hence, because of the application

of the same SHM equation, energy transfer did not occur.

∆𝐸𝑆𝐻𝑀 = 𝑃′ − ∆𝐸𝑜𝑡ℎ𝑒𝑟 ∆𝐸𝑝𝑟𝑒 𝐴𝑖= 𝐸𝑆𝐻𝑀−𝑎𝑓𝑡𝑒𝑟 − 𝐸𝑆𝐻𝑀 = 0

=
3

2
𝑀𝜔2𝑣𝑇

2 𝐴𝑖 + ∆𝐴𝑖
2 − 𝐴𝑖

2 − ∆𝐸𝑜𝑡ℎ𝑒𝑟0

=
3

2
𝑀𝜔2𝐴𝑖

2 𝑣𝑇 + ∆𝑣𝑇
2 − 𝑣𝑇

2 + ∆𝐸𝑝𝑟𝑒𝐴𝑖 − ∆𝐸𝑜𝑡ℎ𝑒𝑟0 (75)

The Ai prevention energy was denoted as ∆𝐸𝑝𝑟𝑒𝐴𝑖, which was not

actually present (Eq. (75)). ・・・. The subscripts “at∆𝐴𝑖” and

“at∆𝑣𝑇” denote ∆𝐸𝑜𝑡ℎ𝑒𝑟0 before and after prevention Ai.

∆𝐸𝑝𝑟𝑒 𝐴𝑖= 𝐸𝑆𝐻𝑀−𝑎𝑓𝑡𝑒𝑟 − 𝐸𝑆𝐻𝑀 𝜔𝑒𝑖𝑔𝑒𝑛 = 2𝜋𝑣𝑒𝑖𝑔𝑒𝑛

𝑃′ =
3𝑀𝜔𝑒𝑖𝑔𝑒𝑛

2 𝐴𝑒𝑖𝑔𝑒𝑛+∆𝐴𝑖
2
−𝐴𝑒𝑖𝑔𝑒𝑛

2

2
+ ∆𝐸𝑜𝑡ℎ𝑒𝑟0−𝑎𝑡∆𝐴𝑖 − ∆𝐸𝑝𝑟𝑒 𝐴𝑖

=
3

2
𝑀𝐴𝑒𝑖𝑔𝑒𝑛

2 𝜔𝑒𝑖𝑔𝑒𝑛 + ∆𝜔
2
− 𝜔𝑒𝑖𝑔𝑒𝑛

2 + ∆𝐸𝑜𝑡ℎ𝑒𝑟0−𝑎𝑡∆𝑣𝑇 (75)

Eighth  page, 

left, 1th line 

from bottom.

Every time the phase changes, the initial value Aoth0 varies. (Elimination)

Eighth page,

Figs. 24–(a), 

26, 29, and 30.

ΔEother2 and lnΔEother2. ΔEother and lnΔEother.  (“2” was eliminated)

Ninth page, 

left, 3th line 

from the top.

The number of resonating ions Nrs gradually increased with 

T until NT at about 120℃.

The number of resonating ions Nrs gradually increased with T
until NT at about 120 – 500℃.

Ninth page, 

left, 25th –

30th lines 

from the top. 

For 𝑇 < 273 K, c was approximately equal to c1 because Nrs

was small; hence, 𝑘𝜔𝑟 = 𝑘𝜔𝑓 = 𝑘𝜔 ∝ 𝑁𝑟𝑠/𝑁𝑇 was smaller

than that at 𝑇 ≥ 273 K. Here, the probability of generating

resonating ions was small. Ions did not possess sufficient

kinetic energy to increase with the quadratic equation.

At 393 ≤ 𝑇 < 773 K, the high slope property of c – T is depicted

in Fig. 28. ΔEother influenced c because exponents of ΔESHM in

ΔEother increased from 1 to 2. 𝑘𝜔𝑟 = 𝑘𝜔𝑓 = 𝑘𝜔 ∝ 𝑁𝑟𝑠/𝑁𝑇 was

smaller than 𝑘𝜔=1 at 𝑇 ≥ 773 𝐾. Here, the probability pr-rs of

generating resonating molecules was under 1. For 𝑇 < 273 K,

Nrs was small. c was approximately equal to c1 because ions did

not possess sufficient kinetic energy to increase with the

quadratic equation.
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Ninth page, 

left – right, 5th

– 4th lines 

from the 

bottom and 

top, 

respectively.

Therefore, according to the curve trend observed in Fig.34,

resonation probability pr-rs in Eq. (86) was derived (Fig. 35).

Hence, 𝑁𝑟𝑠 = 𝑁𝑇𝑝𝑟−𝑟𝑠 ≈ 𝑁𝑇 Τ𝑇 𝑇𝑐 . 𝑝𝑟−𝑟𝑠 property was almost

straight line and affected by Aoth0 size to result from Tc

proportional to 𝑘𝑇−𝑏𝑎𝑠𝑒 − 𝑘𝑇|𝑃′=𝑃′𝑐, where 𝐴𝑜𝑡ℎ0 = 𝐴𝑒𝑖𝑔𝑒𝑛 /10 at

𝑇𝑐 = 393 𝐾 was assumed. At 𝑇 < 393 𝐾 , owing to Δω from

small Nrs, ΔEother was expressed as linear equation ΔEother1

because ΔEother2 was omitted by low T (Fig. 30 and Eq. 87).

Therefore, according to the curve trend observed in Fig.34, pr-rs

was derived from 𝜁𝑝𝑟 (Eq. (86) and Fig. 35). Hence, 𝑁𝑟𝑠 =

𝑁𝑇𝑝𝑟−𝑟𝑠 ≈ 𝑁𝑇 Τ𝑇 𝑇𝑐. 𝜁𝑝𝑟 property was affected by Aoth0 size, with

which pr-rs varied from a steady 𝜁𝑝𝑟|𝑇=𝑇𝑐. Tc and 𝑃′|𝑇=𝑇𝑐were

proportional to Aoth0 and 1/𝜁𝑝𝑟|𝑇=𝑇𝑐 . At 𝑇 < 393 𝐾, owing to

small P’, ΔEother was expressed as linear equation ΔEother1

because ΔEother2 was omitted by 𝐸𝑜𝑡ℎ𝑒𝑟0 ≫ ∆𝐸𝑜𝑡ℎ𝑒𝑟 (Fig. 30 and

Eq. (87)). Consequently, the follow-up ability 𝜁𝑝𝑟 slightly and

uniformly appeared, with 𝑝𝑟−𝑟𝑠 ≈ 0.006, as determined from

comparison of ΔEother at 500℃ in Figs. 36 and 37.

Ninth page, 

right, Figs. 34 

and 35.

Ninth page, 

right,Eq. (86)
𝑝𝑟−𝑟𝑠 =

𝜁𝑝𝑟|𝑃′=𝑃′𝑐
𝑘𝑇−𝑏𝑎𝑠𝑒−𝑘𝑇

𝑃′ 0 < 𝑃′ ≤ 𝑃′𝑐, 𝑃
′ = 𝑃′𝑐 𝑎𝑡 𝑇 = 𝑇𝑐 (86) 𝑝𝑟−𝑟𝑠 =

𝜁𝑝𝑟−𝜁𝑝𝑟|𝑇=120℃

𝜁𝑝𝑟|𝑇=𝑇𝑐−𝜁𝑝𝑟|𝑇=120℃
𝑇𝑐 = 500℃

𝑃′𝑒𝑖𝑔𝑒𝑛

𝑃′|𝑇=𝑇𝑐
= 𝜂

𝐴𝑒𝑖𝑔𝑒𝑛
2

𝐴𝑜𝑡ℎ0
2 + 𝜂 − 1, 𝜂 =

3𝐴𝑒𝑖𝑔𝑒𝑛
2𝜁𝑝𝑟|𝑇=𝑇𝑐

2
(86)
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10th page, left, 

legends in 

Figs.42 and 43.

11th page, left, 

Eqs. (103) –

(107).

𝐸𝐼𝑅 =
3𝑉

2
𝐴𝐼𝑅
2 𝑣𝑇

2 =
3𝑉

2
𝐴𝐼𝑅−𝑙𝑖𝑚𝑖𝑡
2 𝑣𝑇𝑚𝑎𝑥

2                          (103)

∆𝐸𝐼𝑅 =
3𝑉𝐴𝐼𝑅

2 𝑣𝑇
2−𝑣𝑒𝑖𝑔𝑒𝑛

2

2

≈ 3𝑉𝐴𝐼𝑅
2 𝑣𝑒𝑖𝑔𝑒𝑛𝑣 ≈ 3𝑉𝐴𝐼𝑅−𝑙𝑖𝑚𝑖𝑡

2 𝑣𝑒𝑖𝑔𝑒𝑛𝑣𝑚𝑎𝑥

𝑝′ ≈ 3𝐴𝐼𝑅−𝑙𝑖𝑚𝑖𝑡
2 𝑣𝑒𝑖𝑔𝑒𝑛𝑣𝑚𝑎𝑥 , 𝑃

′
𝑒𝑖𝑔𝑒𝑛 =

3𝑉𝐴𝐼𝑅
2 𝑣𝑒𝑖𝑔𝑒𝑛

2

2
(104)

∆𝑃′𝑛′ = 3∆𝑉𝑛′𝐴𝐼𝑅
2 𝑣𝑇𝑛′

2 − 𝑣𝑒𝑖𝑔𝑒𝑛
2

≈ 6∆𝑉𝑛′𝐴𝐼𝑅
2 𝑣𝑒𝑖𝑔𝑒𝑛∆𝑣𝑇𝑛′ (105)

∆𝑃′𝑢𝑛𝑖𝑡−𝑛′ = 3∆𝑉𝑛′𝐴𝐼𝑅
2 𝑣 + 𝑣𝑒𝑖𝑔𝑒𝑛

2
− 𝑣𝑒𝑖𝑔𝑒𝑛

2

≈ 6∆𝑉𝑛′𝐴𝐼𝑅
2 𝑣𝑒𝑖𝑔𝑒𝑛𝑣                                                             (106)                                                                                                       

𝐴𝐼𝑅−𝑙𝑖𝑚𝑖𝑡 =
1

𝑉

𝑚ℎ′

3𝜓′𝑐0−𝛼𝑝𝑣𝑒𝑖𝑔𝑒𝑛

∆𝑃′𝑢𝑛𝑖𝑡−𝑛′ ≈ 6∆𝑉𝑛′𝐴𝐼𝑅−𝑙𝑖𝑚𝑖𝑡
2 𝑣𝑒𝑖𝑔𝑒𝑛𝑣𝑚𝑎𝑥 ,   (107)

𝐸𝐼𝑅 = 3𝜋2𝑘𝐴𝑞
2 𝑞2𝑉𝐴𝐼𝑅

2 𝑣𝑇
2 = 3𝜋2𝑘𝐴𝑞

2 𝑞2𝑉𝐴𝐼𝑅−𝑙𝑖𝑚𝑖𝑡
2 𝑣𝑇𝑚𝑎𝑥

2    (103)

∆𝐸𝐼𝑅 = 3𝜋2𝑘𝐴𝑞
2 𝑞2𝑉𝐴𝐼𝑅

2 𝑣𝑇
2 − 𝑣𝑒𝑖𝑔𝑒𝑛

2

≈ 6𝜋2𝑘𝐴𝑞
2 𝑞2𝑉𝐴𝐼𝑅

2 𝑣𝑒𝑖𝑔𝑒𝑛𝑣 ≈ 6𝜋2𝑘𝐴𝑞
2 𝑞2𝑉𝐴𝐼𝑅−𝑙𝑖𝑚𝑖𝑡

2 𝑣𝑒𝑖𝑔𝑒𝑛𝑣𝑚𝑎𝑥 

𝑃′𝑒𝑖𝑔𝑒𝑛 = 3𝜋2𝑘𝐴𝑞
2 𝑞2𝑉𝐴𝐼𝑅

2 𝑣𝑒𝑖𝑔𝑒𝑛
2                (104)

∆𝑃′𝑛′ = 6𝜋2𝑘𝐴𝑞
2 𝑞2∆𝑉𝑛′𝐴𝐼𝑅

2 𝑣𝑇𝑛′
2 − 𝑣𝑒𝑖𝑔𝑒𝑛

2

≈ 12𝜋2𝑘𝐴𝑞
2 𝑞2∆𝑉𝑛′𝐴𝐼𝑅

2 𝑣𝑒𝑖𝑔𝑒𝑛∆𝑣𝑇𝑛′ (105)

∆𝑃′𝑢𝑛𝑖𝑡−𝑛′ = 6𝜋2𝑘𝐴𝑞
2 𝑞2∆𝑉𝑛′𝐴𝐼𝑅

2 𝑣 + 𝑣𝑒𝑖𝑔𝑒𝑛
2
− 𝑣𝑒𝑖𝑔𝑒𝑛

2

≈ 12𝜋2𝑘𝐴𝑞
2 𝑞2∆𝑉𝑛′𝐴𝐼𝑅

2 𝑣𝑒𝑖𝑔𝑒𝑛𝑣 (106)

𝐴𝐼𝑅−𝑙𝑖𝑚𝑖𝑡 = 1.5𝐾𝐴 

∆𝑃′𝑢𝑛𝑖𝑡−𝑛′ ≈ 12𝜋2𝑘𝐴𝑞
2 𝑞2∆𝑉𝑛′𝐴𝐼𝑅−𝑙𝑖𝑚𝑖𝑡

2 𝑣𝑒𝑖𝑔𝑒𝑛𝑣𝑚𝑎𝑥 ,      (107)
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11th page, left, 

Eqs.(108) –

(110).

𝐴𝐼𝑅 =
3

4𝜋𝑟1
3

𝑚ℎ′ 𝑛′

3𝜓′𝑐0−𝛼𝑝𝑣𝑒𝑖𝑔𝑒𝑛

4𝑚1.5−6𝑚 𝑛′+2𝑛′1.5

3 𝑚−𝑛′ 1−𝑒 Τ−𝑡 𝜏  

= 𝐾𝐴 2 𝑛′
2𝑚1.5−3𝑚 𝑛′+𝑛′1.5

3 𝑚−𝑛′ 1−𝑒 Τ−𝑡 𝜏  

𝑃𝑓𝑙𝑜𝑤,𝑛′ ≈ 6𝐴𝐼𝑅
2 𝑣𝑒𝑖𝑔𝑒𝑛∆𝑣𝑇𝑛′∆𝑉𝑛′ ,

𝐾𝐴 =
3

4𝜋𝑟1
3

𝑚ℎ′

3𝜓′𝑐0−𝛼𝑝𝑣𝑒𝑖𝑔𝑒𝑛

(108)

𝐴𝐼𝑅−𝑜𝑟𝑖 =
3

4𝜋𝑟1
3

2𝑚𝑛′ℎ′

3𝜓′𝑐0−𝛼𝑝𝑣𝑒𝑖𝑔𝑒𝑛
= 𝐾𝐴 2𝑛′ 

𝐼𝑅𝑜𝑟𝑖,𝑛′ ≈ 6𝐴𝐼𝑅−𝑊
2 𝑣𝑒𝑖𝑔𝑒𝑛∆𝑣𝑇𝑛′∆𝑉𝑛′     (109)

𝐼𝑅𝑡𝑜𝑡𝑎𝑙,𝑛′ ≈ 6𝐴𝐼𝑅−𝑡𝑜𝑡𝑎𝑙
2 𝑣𝑒𝑖𝑔𝑒𝑛∆𝑣𝑇𝑛′∆𝑉𝑛′ (110)

𝐴𝐼𝑅 =
2𝑚1.5 𝑛′−3𝑚𝑛′+𝑛′2

𝑚−𝑛′ 1−𝑒 Τ−𝑡 𝜏 𝐾𝐴

𝑃𝑓𝑙𝑜𝑤,𝑛′ ≈ 12𝜋2𝑘𝐴𝑞
2 𝑞2𝐴𝐼𝑅

2 𝑣𝑒𝑖𝑔𝑒𝑛∆𝑣𝑇𝑛′∆𝑉𝑛′ ,

𝐾𝐴 =
1

4𝜋2𝑟1
3𝑘𝐴𝑞𝑞

2𝑚ℎ′𝑘𝜓𝜀0 1−𝜆′𝑐−𝜆′𝑟

𝑣𝑒𝑖𝑔𝑒𝑛

(108)

𝐴𝐼𝑅−𝑜𝑟𝑖 = 3𝑛′𝐾𝐴 

𝐼𝑅𝑜𝑟𝑖,𝑛′ ≈ 12𝜋2𝑘𝐴𝑞
2 𝑞2𝐴𝐼𝑅−𝑜𝑟𝑖

2 𝑣𝑒𝑖𝑔𝑒𝑛∆𝑣𝑇𝑛′∆𝑉𝑛′            (109)

𝐼𝑅𝑡𝑜𝑡𝑎𝑙,𝑛′ ≈ 12𝜋2𝑘𝐴𝑞
2 𝑞2𝐴𝐼𝑅−𝑡𝑜𝑡𝑎𝑙

2 𝑣𝑒𝑖𝑔𝑒𝑛∆𝑣𝑇𝑛′∆𝑉𝑛′      (110)

11th page, left, 

5th – 9th lines 

from the 

bottom.

Thus, 𝑝′ = 2𝐴𝐼𝑅−𝑙𝑖𝑚𝑖𝑡
2 𝑣𝑒𝑖𝑔𝑒𝑛𝑣𝑚𝑎𝑥 was defined as the

amount of thermal energy per unit volume and v in

the spherical space. Then, P’ + P’eigen of IR energy in

3D was expressed as 3𝑉𝐴𝐼𝑅
2 𝑣𝑇

2/2 (Eq. (103)).

Thus, 𝑝′ = 12𝜋2𝑘𝐴𝑞
2 𝑞2𝐴𝐼𝑅−𝑙𝑖𝑚𝑖𝑡

2 𝑣𝑒𝑖𝑔𝑒𝑛𝑣𝑚𝑎𝑥 was defined as the amount of

thermal energy per unit volume and v in the spherical space. Then,

P’ + P’eigen of IR energy in 3D was expressed as 6𝜋2𝑉𝑘𝐴𝑞
2 𝑞2𝐴𝐼𝑅

2 𝑣𝑇
2 (Eq.

(103)).

11th page, right, 

7th – 10th and 

the end of 

Section 11.3.

When 𝜓′𝑐0−𝛼𝑝2 = 27.8 m3/W = 1/𝜆𝑡, conductivity 𝜆𝑡 =

0.036W/m3 , and 𝑟1 = 0.1 m, KA = 1.2 × 10-12 was

obtained using the value of veigen in the table in Fig. 45.

When 𝜆′𝑐 + 𝜆′𝑟 = 0.5, 𝑘𝐴𝑞qKA = 1.97 × 10-18 was obtained using the

value of veigen in the table in Fig. 45. ・・・. Based on KA in Eq. (108),

the IR amplitudes included 𝜀0 and were reduced by λ’c + λ’r. The IR

energy incorporated ε0 as permittivity owing to the IR propagation in

a vacuum state, making 𝑘𝜓 smaller than relative permittivity εr. 𝜓𝑐0
produced the basic field resisting electrical charge vibration because

permittivity represented the degree of influence from electrical field.

11th page, right, 

the end of 

Section 12.1.

Incidentally, the lamination structure of Δθ in the θ distribution

came from the establishment of the addition theorem of P’ in the

limited field of an object. 6



7

Position Before Correction After Correction

11th page, 

right, Fig.44.

12th page,

left, 26th line

from bottom.

𝑣𝑒𝑖𝑔𝑒𝑛−𝑓 and P’eigen were calculated by the cρmol equation in

Eq. (117) and 𝑃′
𝑒𝑖𝑔𝑒𝑛

= 𝑣𝑒𝑖𝑔𝑒𝑛−𝑓 ℎ′𝑐𝜌𝑚𝑜𝑙/2,

𝑣𝑒𝑖𝑔𝑒𝑛−𝑓 and P’eigen were calculated by the cρmol equation and

𝑃′
𝑒𝑖𝑔𝑒𝑛

= 𝑣𝑒𝑖𝑔𝑒𝑛−𝑓 ℎ′𝑐𝜌𝑚𝑜𝑙/2,

12th page, left, 

8th – 12th

lines from the 

bottom.

Hence, the origin 𝐴𝐼𝑅 was defined by IRs from an ion (Eq.

(119)). The 𝐴𝐼𝑅 of the actual IRs comprised the origin 𝐴𝐼𝑅
accumulated by the other IRs with the same vT, according to

the theorem of addition for waves.

Hence, the origin 𝐴𝐼𝑅 defined by IRs from an ion was a constant

because of steady 𝑐𝜌𝑚𝑜𝑙 (Eq. (119)). Incidentally, ΔvT which was

not related to mass and valence was reported, as shown in Eq.

(48) and Section 6.2 of the paper (1).

12th page, 

right, Eqs. 

(117) – (119).

∆𝐸 ≈ 12𝜋2𝑀𝐴𝑒𝑖𝑔𝑒𝑛
2 𝑣𝑒𝑖𝑔𝑒𝑛∆𝑣𝑇

∆𝐸𝐼𝑅 ≈ 6𝐴𝐼𝑅
2 𝑣𝑒𝑖𝑔𝑒𝑛∆𝑣𝑇

𝑐𝜌𝑚𝑜𝑙 ≈
12𝜋2𝑁𝐴𝑀𝐴𝑒𝑖𝑔𝑒𝑛

2 𝑣𝑒𝑖𝑔𝑒𝑛

ℎ′
,

𝑣𝑒𝑖𝑔𝑒𝑛 = 𝑣𝑒𝑖𝑔𝑒𝑛−𝑓 + 𝑣𝑇0,

𝑃′
𝑒𝑖𝑔𝑒𝑛

= 3𝐴𝐼𝑅
2 𝑣𝑒𝑖𝑔𝑒𝑛

2 = 6𝜋2𝑀𝐴𝑒𝑖𝑔𝑒𝑛
2 𝑣𝑒𝑖𝑔𝑒𝑛

2

(117)

𝐸𝐼𝑅 ≈ 6𝐴𝐼𝑅
2 𝑣𝑒𝑖𝑔𝑒𝑛∆𝑣𝑇 + 3𝐴𝐼𝑅

2 𝑣𝑒𝑖𝑔𝑒𝑛
2 (118)

𝐴𝐼𝑅 = 𝐴𝑒𝑖𝑔𝑒𝑛𝜋 2𝑀 (119)

∆𝐸 ≈ 12𝜋2𝑀𝐴𝑒𝑖𝑔𝑒𝑛
2 𝑣𝑒𝑖𝑔𝑒𝑛∆𝑣𝑇 𝑣𝑒𝑖𝑔𝑒𝑛 = 𝑣𝑒𝑖𝑔𝑒𝑛−𝑓 + 𝑣𝑇0

∆𝐸𝐼𝑅 ≈ 12𝜋2𝑘𝐴𝑞
2 𝑞2𝐴𝐼𝑅

2 𝑣𝑒𝑖𝑔𝑒𝑛∆𝑣𝑇
𝑃′𝑒𝑖𝑔𝑒𝑛 = 6𝜋2𝑘𝐴𝑞

2 𝑞2𝐴𝐼𝑅
2 𝑣𝑒𝑖𝑔𝑒𝑛

2

(𝑐𝜌𝑚𝑜𝑙 equation was eliminated)                                     (117)

𝐸𝐼𝑅 ≈ 12𝜋2𝑘𝐴𝑞
2 𝑞2𝐴𝐼𝑅

2 𝑣𝑒𝑖𝑔𝑒𝑛∆𝑣𝑇 + 6𝜋2𝑘𝐴𝑞
2 𝑞2𝐴𝐼𝑅

2 𝑣𝑒𝑖𝑔𝑒𝑛
2 (118)

𝑘𝐴𝑞𝑞𝐴𝐼𝑅 = 𝐴𝑒𝑖𝑔𝑒𝑛 𝑀 : constant                               (119)
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12th page, right, Fig. 

45.
Intercept veigen in IR-class (small)

Presence of negative vT

Intercept veigen in IR-class (small) : 𝑣𝑇0
Presence of negative vT : 𝑣𝑒𝑖𝑔𝑒𝑛−𝑓

12th page, right, the 

end of Section 13.2.

13.3 Consistency of IR energy The mass of the space was negligible, so
space alone did not generate SHM. Instead, space vibrations were caused by ion

vibrations due to polarization effects. The Coulomb power generated by

polarization linked the ion to space, involving q2 (Fig. 47). Consequently, the ion

vibrated in 𝑀 1+ 𝛽𝑖𝑟 , where 𝛽𝑖𝑟 ∝ 𝑞2. Therefore, the energy of space vibrations

was given by: 𝐸𝐼𝑅 = 3𝛽𝑖𝑟𝑀𝐴𝑖
2𝜔2/2 = 3𝑘𝐴𝑞

2 𝑞2𝐴𝐼𝑅
2 𝜔2/2 , where kAq is the factor

connecting space to ion. According to Maxwell’s equations, the electrostatic field

energy was 𝐼 = Τ𝜀0𝐸𝑓
2 2. For IR energy, the electric field Ef depended on the charge q

and AIR. However, for example, Ef for AIR-ori in Eq. (12) did not incorporate q (Eq.

(120)). Thus, in the context of τ, IRs were unrelated to valence. Τ𝐸𝐼𝑅 4𝜋𝑟2 2

corresponding to I came from Τ𝑘𝐴𝑞𝑞𝐴𝐼𝑅 4𝜋𝑟2 that 𝑞𝐴𝐼𝑅 distributed in all directions

was divided by surface area.

𝐸𝑓 =
1

16𝜋3𝑟1
3𝑟2

3ℎ′ 1−𝜆′𝑐−𝜆′𝑟

𝑣𝑒𝑖𝑔𝑒𝑛

𝐸𝐼𝑅

4𝜋𝑟2 2 =
3𝜀0𝐸𝑓

2𝜔𝑇
2

2
, 𝑘𝜓 = 1 (120)

Fig. 47   Connection with Coulomb power.

8



9
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13th page, left, 

32th line from 

top.

The electrical potential energy of finite value at r = 0

was studied for ions. The steady amplitude of ion

vibration that was steadied under a high slope of Vp

was verified ・・・. Additionally, ・・・ because it was

found that motions other ・・・

The amplitude of ion vibration that was steadied under a high slope
of Vp was verified ・・・. Additionally, ・・・ because it was found

that, SHM resonated with spin having fixed rt, the SHM amplitude

was characterized by changeableness, and, motions other ・・・

13th page, 

Appendix, 1. 

Before 

correction.

(Addition)
1.8 Fifth page, right, 9th from the top   In this manner, the high 

thermal insulation property was obtained.
1.9 Fifth page, left, figure 11  

Fig. 11  Trends of β and ψc/ψr.
1.10 Sixth page, left, first line from top  direction, as shown in Fig. 13.

1.11 Sixth page, right, equation (42)   ൫

൯

𝐾𝑟𝑒𝑑 =

12𝜋2𝛽𝑖𝑟𝑀𝐴𝑖
2𝑣𝑒𝑖𝑔𝑒𝑛, 𝐼𝑅𝑜𝑟𝑖 < 6𝜋2𝑀𝑒𝐴𝑖

2𝑣𝑇
2

1.12 Seventh page, left, 7th line from bottom   Here, the EfA of the 

dent took a finite value with the distance rdent.
1.13 Seventh page, right, second line from top   however, its curve 

was nearly flat to be the exponent 1/3.

1.14 Seventh page, right, equation (49)   𝑓𝑟𝑒𝑠𝑖𝑙𝑒𝑛𝑐𝑒 = 𝑞
𝑑𝑉𝑝𝐴𝐵

𝑑𝑡
=

𝑞
𝑑 𝑉𝑝𝐵−𝑉𝑝𝐴

𝑑𝑡
(Next item numbers are moved up.)

0

0.5

1

1.5

0 0.1 0.2 0.3 0.4 0.5

β
, 
 ψ

c
/ψ

r

λr

β

ψc/ψr



10
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14th page, Appendix, 

2. After correction.
(Addition)
2.8 Fifth page, right, 9th from the top   In this manner, the high thermal insulation property 

was obtained, as shown in Fig. 31.
2.9 Fifth page, left, figure 11 

Fig. 11  Trends of ψ’c/ψc0 and ψ’r/ψc0 .
2.10 Sixth page, left, first line from top   3 D, as shown in Fig. 13.

2.11 Sixth page, right, equation (42)   

𝐾𝑟𝑒𝑑 = 12𝜋2𝛽𝑖𝑟𝑀𝐴𝑖
2𝑣𝑒𝑖𝑔𝑒𝑛, 𝐼𝑅𝑜𝑟𝑖 < 6𝜋2𝑀𝑒𝐴𝑖

2𝑣𝑇
2 ,

𝛽𝑖𝑟 =
3ℎ′𝑚 1−𝜆𝑐−𝜆𝑟

16𝜋4𝑟1
6𝑀𝐴𝑖

2𝑣𝑒𝑖𝑔𝑒𝑛𝑘𝜓𝜀0

2.12 Seventh page, left, 7th line from bottom   Here, the EfA of the dent took a finite value with 

rdent, as shown in Fig. 22.
2.13 Seventh page, right, second line from top   however, its curve was nearly flat to be the 

exponent 1/3, as shown in Fig. 25.

2.14 Seventh page, right, equation (49)   𝑓𝑟𝑒𝑠𝑖𝑙𝑒𝑛𝑐𝑒 = 𝑞
𝑑𝑉𝑝𝐴𝐵

𝑑𝑟
= 𝑞

𝑑 𝑉𝑝𝐵−𝑉𝑝𝐴

𝑑𝑟

(Next item numbers are moved up.)

0

20

40

60

80
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ψ
'c

/ψ
c
0
, 
ψ

'r
/ψ

c
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ψ'r/ψc0
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