No. 48 Incorporation of radiant heat into the temperature equation and research on infrared generation mechanism – (2) List of Errata (2024 IEEJ, Annual Conference of PE)

Note; this first page indicated 8-6-17 page.

Position	Before Correction	After Correction
Second page, left, Eq. (5).	$\psi_{c0} = k_{\psi} \varepsilon_0$	$\psi_{c0} = \frac{1}{k_{\psi}\varepsilon_0}$
Second page, left, 12 th and 13 th lines from the bottom.	amplitudes $A_{IR\text{-}ori}$, as shown in Eqs. (11) and (12). $c\rho$ and $\psi'_{c0\text{-}ap}$ of τ are determined using β_{ir} .	amplitudes $A_{IR \cdot ori}$ and influenced on $\lambda'_c + \lambda'_r$ (Eqs. (11) and (12)).
Second page, left, Eqs. (10) – (12).	$\Delta IR_{ori} = 6A_{IR-ori}^{2} v_{eigen} v$ $\left(IR_{ori} = A_{IR-ori}^{2} v_{T}^{2}, \Delta V = 1\right) \qquad (10)$ $\beta_{ir} = \frac{3h'm(1-\lambda'c-\lambda'r)}{16\pi^{4}r_{1}^{6}MA_{i}^{2}v_{eigen}k_{\psi}\varepsilon_{0}} = \frac{A_{IR-ori}^{2}}{2\pi^{2}MA_{i}^{2}} \qquad (11)$ $A_{IR-ori} = \sqrt{\frac{h'c\rho}{6\tau v_{eigen}}} \qquad (12)$	$\Delta IR_{ori} = 12\pi^{2}k_{Aq}^{2}q^{2}A_{IR-ori}^{2}v_{eigen}v$ $(IR_{ori} = 6\pi^{2}k_{Aq}^{2}q^{2}A_{IR-ori}^{2}v_{T}^{2}, V = 1)$ $\beta_{ir} = \frac{3h'm(1-\lambda'_{c}-\lambda'_{r})}{16\pi^{4}r_{1}^{6}MA_{i}^{2}v_{eigen}\psi_{c0}} = \frac{\Delta IR_{ori}}{\Delta E} = \frac{k_{Aq}^{2}q^{2}A_{IR-ori}^{2}}{A_{i}^{2}M}$ $A_{IR-ori} = \frac{1}{2\pi}\sqrt{\frac{h'c\rho}{3\tau v_{eigen}}} = \frac{1}{4\pi^{2}r_{1}^{3}k_{Aq}q}\sqrt{\frac{3mh'k_{\psi}\varepsilon_{0}(1-\lambda'_{c}-\lambda'_{r})}{v_{eigen}}}$ (12)
Third page, right, the label of vertical axis in Fig. 6 (b).	ΔAi / Aeigen, P' / P'eigen <mark>(10^5m)</mark>	ΔAi / Aeigen, P' / P'eigen
Third page, right, 13 th line from the bottom.	Ions N_{re} accepted large P' , retaining vibration states	Ions N_{re} accepted large P' and became standby release ions retaining vibration states

Position	Before Correction	After Correction	
Fourth page, right, legend in Fig.12.	Φ OH-before	Φ OH-after	
Fourth page, right, Fig.11 and Fig.13.	$ \begin{array}{c} \Phi 1 \\ \Delta q 1 V p 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	$ \begin{array}{c c} & \varphi 1 \\ & \Delta q 1 V p 1 \\ & Ion1 \\ & Ion2 \\ & L \end{array} $ $ \begin{array}{c} & \varphi 2 \\ & \Delta q 2 V p 2 \\ & Opposite \\ & direction \\ & Ion1 \\ & L \end{array} $ $ \begin{array}{c} & V p 1 \\ & V p 2 \\ & Ai1 \\ & Ai2 \\ & Ai2 \\ & V p 2 \\ & H i 1 \\ & Ai2 \\ & V p 2 \\ & V p 1 \\ & H i 2 \\ & V p 1 \\ & V p 2 \\ & V p 1 \\ & H i 2 \\ & V p 1 \\ & V p 2 \\ & V p 1 \\ & H i 2 \\ & V p 1 \\ & H i 2 \\ & V p 2 \\ & V p 1 \\ & H i 2 \\ & V p 1 \\ & V p 2 \\ & V p 1 \\ & H i 2 \\ & V p 1 \\ & V p 2 \\ & V p 1 \\ & H i 2 \\ & V p 1 \\ & V p 2 \\ & V p 1 \\ & H i 2 \\ & V p 2 \\ & H i 2 \\ & V p 2 \\ & H i 2 \\ & V p 2 \\ & H i 2 \\ & V p 2 \\ & H i 2 \\ & V p 2 \\ & H i 2 \\ & V p 2 \\ & H i 2 \\ & V p 2 \\ & H i 2 \\ & V p 2 \\ & H i 2 \\ & H i 2 \\ & V p 2 \\ & H i 2 \\ & V p 2 \\ & H i 2 \\ & $	
Fifth page, left, 16 th – 19 th line from the top.	Ion spins were generated by the unbalanced location of electrical charge because ion comprised elementary particles, at the same time as ion SHM, referencing Section 2.2 of the paper ⁽²⁾ . First, as mentioned in Section 7.2, the SHM of a released ion was influenced by ion spins alone, and its A_i was prevented by spins. • • • . Next, spin radii r_t was fixed, and the ω of spins resonated with the v_T of SHM.	Ion spins were generated by the unbalanced location of electrical charge because ion comprised elementary particles, at the same time as ion SHM. Ion spins comprising two axes in 3D motion received and emitted IR energy, referencing Section 2.2 of the paper ⁽²⁾ . First, as mentioned in Section 7.2, the SHM of a released ion was influenced by ion spins alone, and its A_i was prevented by spins. • • • Next, spin radius r_t was fixed, and the ω of spins resonated with the v_T of SHM.	
Sixth page, right, legend in Fig.22.	rdent=1.38*10^-9m Aeigen=3.66*10^-12m veigen=1.85*10^13Hz B=10000, Limited γ r=1.117	rdent <mark>-after</mark> =1.38*10^-9m Aeigen=3.66*10^-12m veigen=1.85*10^13Hz B=10000, Limited γ r=1.117	

Position	Before Correction	After Correction
Seventh page, right, 8.3. Invisible energy of Ai preventions.	The A_i prevention energy was denoted as ΔE_{preAi} that energy transfer from a portion of ΔE_{other} to ΔE_{SHM} was used in the simulations. However, ΔE_{preAi} was not actually present (Eq. (75)). • • • . Hence, because of the application of the same SHM equation, energy transfer did not occur. $\Delta E_{SHM} = P' - \Delta E_{other} \left(\Delta E_{preAi} = E_{SHM-after} - E_{SHM} = 0\right)$ $= \frac{3}{2}M\omega^2 v_T^2 \left((A_i + \Delta A_i)^2 - A_i^2\right) - \Delta E_{other0}$ $= \frac{3}{2}M\omega^2 A_i^2 \left((v_T + \Delta v_T)^2 - v_T^2\right) + \Delta E_{preAi} - \Delta E_{other0}$ (75)	The A_i prevention energy was denoted as ΔE_{preAi} , which was not actually present (Eq. (75)). $\cdot \cdot \cdot$. The subscripts "at ΔA_i " and "at Δv_T " denote ΔE_{other0} before and after prevention A_i . $\Delta E_{pre Ai} = E_{SHM-after} - E_{SHM}$ ($\omega_{eigen} = 2\pi v_{eigen}$) $P' = \frac{3M\omega_{eigen}^2 ((A_{eigen} + \Delta A_i)^2 - A_{eigen}^2)}{2} + \Delta E_{other0-at\Delta A_i} - \Delta E_{pre Ai}$ $= \frac{3}{2}MA_{eigen}^2 ((\omega_{eigen} + \Delta \omega)^2 - \omega_{eigen}^2) + \Delta E_{other0-at\Delta v_T}$ (75)
Eighth page, left, 1 th line from bottom.	Every time the phase changes, the initial value A_{oth0} varies.	(Elimination)
Eighth page, Figs. 24–(a), 26, 29, and 30.	Δ Eother2 and ln Δ Eother2.	Δ Eother and ln Δ Eother. ("2" was eliminated)
Ninth page, left, 3 th line from the top.	The number of resonating ions N_{rs} gradually increased with T until N_T at about 120°C.	The number of resonating ions N_{rs} gradually increased with T until N_T at about $120 - 500$ °C.
Ninth page, left, 25 th – 30 th lines from the top.	For $T < 273$ K, c was approximately equal to c_1 because N_{rs} was small; hence, $k_{\omega r} = k_{\omega f} = k_{\omega} \propto N_{rs}/N_T$ was smaller than that at $T \ge 273$ K. Here, the probability of generating resonating ions was small. Ions did not possess sufficient kinetic energy to increase with the quadratic equation.	At $393 \leq T < 773$ K, the high slope property of $c - T$ is depicted in Fig. 28. ΔE_{other} influenced c because exponents of ΔE_{SHM} in ΔE_{other} increased from 1 to 2. $k_{\omega r} = k_{\omega f} = k_{\omega} \propto N_{rs}/N_T$ was smaller than $k_{\omega}=1$ at $T \geq 773$ K. Here, the probability p_{TTS} of generating resonating molecules was under 1. For $T < 273$ K, N_{rs} was small. c was approximately equal to c_1 because ions did not possess sufficient kinetic energy to increase with the quadratic equation.

Position

Before Correction

After Correction

Ninth page, Therefore, according to the curve trend observed in Fig.34, Therefore, according to the curve trend observed in Fig.34, p_{rrs} was derived from ζ_{pr} (Eq. (86) and Fig. 35). Hence, $N_{rs} =$ left – right, 5^{th} resonation probability p_{rrs} in Eq. (86) was derived (Fig. 35). -4^{th} lines Hence, $N_{rs} = N_T p_{r-rs} \approx N_T T / T_c$. p_{r-rs} property was almost $N_T p_{r-rs} \approx N_T T / T_c$. ζ_{pr} property was affected by A_{oth0} size, with from the straight line and affected by A_{otb0} size to result from T_c which p_{rrs} varied from a steady $\zeta_{pr}|_{T=Tc}$. T_c and $P'|_{T=Tc}$ were bottom and proportional to $k_{T-base} - k_T|_{P'=P'C}$, where $A_{oth0} = A_{eigen}/10$ at proportional to A_{oth0} and $1/\zeta_{pr}|_{T=Tc}$. At T < 393 K, owing to top, $T_c = 393 K$ was assumed. At T < 393 K, owing to $\Delta \omega$ from small *P*, ΔE_{other} was expressed as linear equation ΔE_{other1} respectively. small N_{rs} ΔE_{other} was expressed as linear equation ΔE_{other1} because ΔE_{other2} was omitted by $E_{other0} \gg \Delta E_{other}$ (Fig. 30 and because ΔE_{other2} was omitted by low T (Fig. 30 and Eq. 87). Eq. (87)). Consequently, the follow-up ability ζ_{nr} slightly and uniformly appeared, with $p_{r-rs} \approx 0.006$, as determined from comparison of ΔE_{other} at 500°C in Figs. 36 and 37. Ninth page, 1.5 6 1.5 Aeigen=3.96*10^-13m, Aeigen=3.96*10^-13m right, Figs. 34 Aoth0=Aeigen/10 (kT-base - kT)/P'... Aeigen/12 ζ pr= (kT-base - kT)/P' veigen=1.85*10^15Hz, Aoth0=Aeigen/12 veigen=1.85*10^15Hz, and 35. Aeigen/10 1 P'eigen=32MJ, M=1g P'eigen=32MJ, M=1g pr-rs pr-rs *10^-8 Aoth0=Aeigen/10 Aoth0=Aeigen/10 Aoth0=Aeigen/12 Aoth0=Aeigen/12 0.5 0.5 Spr|T=T \cap \cap 300_{T (K)}600 900 0 100 200 300 400 0 500 T (K) ³⁰⁰ T (K) ⁶⁰⁰ 0 *T_c* 900 300 700 T (K) Ninth page, $p_{r-rs} = \frac{\zeta_{pr|_{P'=P'c}}}{k_{T-bacc}-k_{T}} P'(0 < P' \le P'_{c}, P' = P'_{c} at T = T_{c})$ $p_{r-rs} = \frac{\zeta_{pr} - \zeta_{pr}|_{T=120^{\circ}C}}{\zeta_{pr}|_{T=Tc} - \zeta_{pr}|_{T=120^{\circ}C}}$ (86) $(Tc = 500^{\circ}C)$ right,Eq. (86) $\left(\frac{P'_{eigen}}{P_{l}|_{T}} = \eta \frac{A_{eigen}^2}{A^2} + \eta - 1, \eta = \frac{3A_{eigen}^2 \zeta_{pr}|_{T=Tc}}{2}\right)$ (86)

Position

11th page, left,

Eqs.(108) -

(110).

Before Correction

$A_{IR} = \frac{3}{4\pi r_1^3} \sqrt{\frac{mh'\sqrt{n'}}{3\psi'_{c0-\alpha p} v_{eigen}}} \left(\frac{4m^{1.5} - 6m\sqrt{n'} + 2n'^{1.5}}{3(m-n')(1 - e^{-t/\tau})}\right)$ $= K_A \sqrt{2\sqrt{n'} \left(\frac{2m^{1.5} - 3m\sqrt{n'} + n'^{1.5}}{3(m-n')(1 - e^{-t/\tau})}\right)}$ $\left(P_{flow,n'} \approx \mathbf{6} A_{IR}^2 v_{eigen} \Delta v_{Tn'} \Delta V_{n'}\right)$ $K_A = \frac{3}{4\pi r_1^3} \sqrt{\frac{mh'}{3\psi'_{c0} - \alpha p v_{eigen}}}$ (108) $A_{IR-ori} = \frac{3}{4\pi r_1^3} \sqrt{\frac{2mn'h'}{3\psi'_{c0-\alpha p}v_{eigen}}} = K_A \sqrt{2n'}$ $(IR_{ori.n'} \approx 6A_{IR-W}^2 v_{eigen} \Delta v_{Tn'} \Delta V_{n'})$ (109)

After Correction

$$\begin{split} A_{IR} &= \sqrt{\frac{2m^{1.5}\sqrt{n'} - 3mn' + n'^2}{(m - n')(1 - e^{-t/\tau})}} K_A \\ \begin{pmatrix} P_{flow,n'} &\approx 12\pi^2 k_{Aq}^2 q^2 A_{IR}^2 v_{eigen} \Delta v_{Tn'} \Delta V_{n'}, \\ K_A &= \frac{1}{4\pi^2 r_1^3 k_{Aq} q} \sqrt{\frac{2mh' k_{\psi} \varepsilon_0 (1 - \lambda'_c - \lambda'_r)}{v_{eigen}}} \end{pmatrix}$$
(108)
$$A_{IR-ori} &= \sqrt{3n'} K_A \\ (IR_{ori,n'} &\approx 12\pi^2 k_{Aq}^2 q^2 A_{IR-ori}^2 v_{eigen} \Delta v_{Tn'} \Delta V_{n'})$$
(109)
$$(IR_{total,n'} &\approx 12\pi^2 k_{Aq}^2 q^2 A_{IR-total}^2 v_{eigen} \Delta v_{Tn'} \Delta V_{n'})$$
(110)

 $(IR_{total.n'} \approx 6A_{IR-total}^2 v_{eigen} \Delta v_{Tn'} \Delta V_{n'})$ Thus, $p' = 2A_{IR-limit}^2 v_{eigen} v_{max}$ was defined as the Thus, $p' = 12\pi^2 k_{Aq}^2 q^2 A_{IR-limit}^2 v_{eigen} v_{max}$ was defined as the amount of 11th page, left, $5^{\text{th}} - 9^{\text{th}}$ lines thermal energy per unit volume and v in the spherical space. Then, amount of thermal energy per unit volume and v in from the the spherical space. Then, $P' + P'_{eigen}$ of IR energy in $P' + P'_{eigen}$ of IR energy in 3D was expressed as $6\pi^2 V k_{Aq}^2 q^2 A_{IR}^2 v_T^2$ (Eq. bottom. 3D was expressed as $\frac{3VA_{IR}^2 v_T^2}{2}$ (Eq. (103)). (103)).When $\psi'_{c0-\alpha p2} = 27.8 \text{ m}^3/\text{W} = 1/\lambda_t$, conductivity $\lambda_t = \text{When } \lambda'_c + \lambda'_r = 0.5$, $k_{Aq} q K_A = 1.97 \times 10^{-18}$ was obtained using the 11th page, right, value of v_{eigen} in the table in Fig. 45. • • • Based on K_A in Eq. (108), $7^{\text{th}} - 10^{\text{th}}$ and 0.036 W/m³, and $r_1 = 0.1$ m, $K_A = 1.2 \times 10^{-12}$ was the end of obtained using the value of v_{eigen} in the table in Fig. 45. the IR amplitudes included ε_0 and were reduced by $\lambda'_c + \lambda'_r$. The IR Section 11.3. energy incorporated ε_0 as permittivity owing to the IR propagation in a vacuum state, making k_{ψ} smaller than relative permittivity ε_r , ψ_{c0} produced the basic field resisting electrical charge vibration because permittivity represented the degree of influence from electrical field. 11th page, right, Incidentally, the lamination structure of $\Delta \theta$ in the θ distribution the end of came from the establishment of the addition theorem of P' in the limited field of an object. Section 12.1. 6

(110)

Position	Before Correction	After Correction
12 th page, right, Fig. 45.	Intercept veigen in IR-class (small) Presence of negative vT	Intercept veigen in IR-class (small) : v_{T0} Presence of negative vT : $v_{eigen-f}$
12 th page, right, the end of Section 13.2.	13.3 Consistency of IR energy The mass of the space was negligible, so space alone did not generate SHM. Instead, space vibrations were caused by ion vibrations due to polarization effects. The Coulomb power generated by polarization linked the ion to space, involving q^2 (Fig. 47). Consequently, the ion vibrated in $M(1 + \beta_{ir})$, where $\beta_{ir} \propto q^2$. Therefore, the energy of space vibrations was given by: $E_{IR} = 3\beta_{ir}MA_i^2\omega^2/2 = 3k_{Aq}^2q^2A_{IR}^2\omega^2/2$, where k_{Aq} is the factor connecting space to ion. According to Maxwell's equations, the electrostatic field energy was $I = \varepsilon_0 E_f^2/2$. For IR energy, the electric field E_f depended on the charge q and A_{IR} . However, for example, E_f for $A_{IR \cdot ori}$ in Eq. (12) did not incorporate q (Eq. (120)). Thus, in the context of τ , IRs were unrelated to valence. $E_{IR}/(4\pi r^2)^2$ corresponding to I came from $k_{Aq}qA_{IR}/(4\pi r^2)$ that qA_{IR} distributed in all directions was divided by surface area. $E_f = \frac{1}{16\pi^3 r_i^2 r^2} \sqrt{\frac{3h'(1-\lambda'_C-\lambda'_r)}{v_{ajagen}}} \left(\frac{E_{IR}}{(4\pi r^2)^2} = \frac{3\varepsilon_0 E_f^2 \omega_T^2}{2}, k_{\psi} = 1\right)$ (120)	
		Fig. 47 Connection with Coulomb power. $q = \frac{q^2}{4\pi\varepsilon_r\varepsilon_0r_{ion}^2} \approx k_{Aq}^2q^2$

Position	Before Correction	After Correction
13th page, left, 32 th line from top.	The electrical potential energy of finite value at $r = 0$ was studied for ions. The steady amplitude of ion vibration that was steadied under a high slope of V_p was verified $\cdot \cdot \cdot$. Additionally, $\cdot \cdot \cdot$ because it was found that motions other $\cdot \cdot \cdot$	The amplitude of ion vibration that was steadied under a high slope of V_p was verified $\cdot \cdot \cdot$. Additionally, $\cdot \cdot \cdot$ because it was found that, SHM resonated with spin having fixed r_p the SHM amplitude was characterized by changeableness, and, motions other $\cdot \cdot \cdot$
13 th page, Appendix, 1. Before correction.		(Addition) 1.8 Fifth page, right, 9 th from the top In this manner, the high thermal insulation property was obtained. 1.9 Fifth page, left, figure 11 $\int_{0.5}^{0} \int_{0.5}^{1.5} \int_{0}^{0} \int_{0.5}^{\beta} \frac{\psi_c/\psi_r}{\psi_c/\psi_r}$ Fig. 11 Trends of β and ψ_c/ψ_r . 1.10 Sixth page, left, first line from top direction, as shown in Fig. 13. 1.11 Sixth page, right, equation (42) $(K_{red} = 12\pi^2\beta_{ir}MA_i^2v_{eigen}, IR_{ori} < 6\pi^2M_eA_i^2v_i^2)$ 1.12 Seventh page, left, 7 th line from bottom Here, the E_{tA} of the dent took a finite value with the distance r_{dent} . 1.13 Seventh page, right, equation (49) $f_{resilence} = q \frac{dV_{pAB}}{dt} = q \frac{d(v_{pB}-v_{pA})}{dt}$ (Next item numbers are moved up.)

Position	Before Correction	After Correction
14 th page, Appendix, 2. After correction.	before Correction	(Addition) 2.8 Fifth page, right, 9 th from the top In this manner, the high thermal insulation property was obtained, as shown in Fig. 31. 2.9 Fifth page, left, figure 11 $0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$
		Fig. 11 Trends of ψ'_{d}/ψ_{c0} and ψ'_{l}/ψ_{c0} . 2.10 Sixth page, left, first line from top 3 D, as shown in Fig. 13. 2.11 Sixth page, right, equation (42) $\begin{pmatrix} K_{red} = 12\pi^2\beta_{ir}MA_i^2v_{eigen}, IR_{ori} < 6\pi^2M_eA_i^2v_{T}^2, \\ \beta_{ir} = \frac{3hm(1-\lambda_c-\lambda_r)}{16\pi^4r_1^6MA_i^2v_{eigen}k_{\psi}\varepsilon_0} \end{pmatrix}$ 2.12 Seventh page, left, 7 th line from bottom Here, the E_{tA} of the dent took a finite value with r_{dentr} as shown in Fig. 22. 2.13 Seventh page, right, second line from top however, its curve was nearly flat to be the exponent 1/3, as shown in Fig. 25. 2.14 Seventh page, right, equation (49) $f_{resilence} = q \frac{dV_{pAB}}{dr} = q \frac{d(V_{pB}-V_{pA})}{dr}$
		(Ivext item numbers are moved up.)