(2004.9)

ページ	行目・表	誤	Œ	
24	5	逆符合	逆符号	
26	10	同符合	同符号	
35	下から 7	名付ける。	名付ける。これは ガウスの法則 と も呼ぶ。	
49	4	面接密度	面積密度	
52	(3.125)式	電気のこう配	電位のこう配	
52	図 3.28	$E_r = \frac{M}{4\pi\varepsilon_0 r^2} \cos\theta$	$E_r = \frac{M}{2\pi\varepsilon_0 r^2} \cos\theta$	
53	6	とおくと	とおくと(この M は式(3.122)の M とは定義と単位が異なる)	
62	6	重ねの理	重ねの理(重ね合わせの原理)	
63	式(4.3)の右下 の項	p_{2n}	p_{nn}	
67	式 (4.11) の右 下の項	p_{2n}	p_{nn}	
68	4	q_{12}	p_{12}	
68	13	p_{22}	p_{11}	
75	下から 6	E_x	F_x	
77	13	$\frac{1}{2} \frac{\varepsilon_0 V_2}{d}$	$\boxed{\frac{1}{2}\frac{\varepsilon_0 V^2}{d}}$	
88	式(4.91)	$Q_2 = -q_{21} +$	$Q_2 = -q_{11} +$	
89	下から 3	pP	pF	
91	2	C_2	C_S	

(2004.9)

ページ	行目・表	誤	Œ	
96	式(5.8)	$E = \frac{\sigma}{\varepsilon_0} \frac{1}{\varepsilon_S}$	$E = \frac{\sigma_f}{\varepsilon_0} \frac{1}{\varepsilon_S}$	
105	図 5.10 説明	単位あたりの	単位長さあたりの	
117	5	3cm ³	3cm ²	
117	5	有する 0.1mm	有する厚さ 0.1mm	
121	9	電位が連続	電界が連続	
125	下から 2	カ <i>F</i> は	力は吸引力でその大きさ F は	
153	11	$U_{\scriptscriptstyle 1}$, $I_{\scriptscriptstyle 1}$ などの向きが	U_{j} , I_{j} の符号は、その向きが	
154	6	g = 6	<i>l</i> = 6	
162	下から 4	$\boldsymbol{j} = e n_e v_e (\boldsymbol{j})$	$\boldsymbol{J} = e n_e v_e (\boldsymbol{J})$	
163	下から 4	j =	J =	
171	11	電導率	導電率	
182	5	(2つの積分記号)	(周回積分記号になおす)	
201	12	$\frac{y,x}{x^2+y^2}$	$\frac{y,x}{\sqrt{x^2+y^2}}$	
209	式 (8.149), (8.153) の 3 番目の式	$A_x =$	$A_z =$	
209	式 (8.151) の 下の行	A_x についても	A_z についても	

(2004.9)

ページ	行目・表	誤	正	
251	下から 1	減磁体	減磁率	
282,283	式 (10.14), (10.15), (10.16), (19.17)	(式内の積分記号)	(周回積分記号になおす)	
323	式 (11.25) 右 辺第1項	$\frac{1}{2}\Delta L L_1^2$	$\frac{1}{2}\Delta L I_1^2$	
338	式 (11.95) 右 辺第1項の中 央部	$e^{-\sqrt{\frac{\omega\sigma\mu}{2}}}$	$e^{-\sqrt{\frac{\omega\sigma\mu}{2}}x}$	
352	例題 12.3 の 解の第2式、 右辺括弧内の 第1式	$oldsymbol{i}_f$	$oldsymbol{J}_f$	
356	3	370	377	
359	14	電導率	導電率	
367	式 (12.71) 右 辺第2項の括 弧内	gradv	$\operatorname{grad} V$	
381	第4章の問7、(b) の2つの解答 式の分子	Q_2	Q^2	
382	第6章,問3 の(c)	1.2×10 ⁻⁴	1.2×10^4	
385	第9章、問5 の(a)	+106	×10 ⁶	
385	第9章、問6	(a), (b), (c), (d)	図(b), 図(c), 図(d), 図(e)	
385	第9章、問8 の(c)	44×10^2	44	
386	第11章、問 2	$\frac{1}{2}\frac{\omega MN}{l}$	$\frac{1}{2}\frac{\mu_0 \omega M N}{a}$	

(2004.9)

追加

ページ	行目・表	誤	Œ	
245	下から 14	換言すれば	すなわち	
289	1	磁束密度はこれよりも	磁束密度は無限長の場合よりも	
288	表 10.1 の右 側中央の数値	3.2	3.19	
132	下から 15	指力線	力線	
35	下から 12	(これを 法線ベクトル という)	(法線ベクトル)	
80	9	式(3.117)より	式(3.117)より、自然対数を log で 記せば(凡例 12 参照)	
42	3~4	しかし、―――と呼んでいる。	(以下のように書き換える) 前者をガウスの法則と呼んで後者 と区別することもあるこては前述 した。	
26	図 3.15 を左 に移動させ て、その右側 余白に追記		注:平曲面 S 上の面積分 $\int_S E \bullet n dS $ についてこれを $\oint_S E \bullet n dS$ あるいは $\oint_S E \bullet n dS$ と記すこともある。	