「電気電子工学のための行列・ベクトル・複素関数・フーリエ解析」正誤表

頁	行, 式, 図, 表	誤	正
8	6 行	(2) ある行のみを	(2) ある列のみを
8	下5行	(3) 行同士を入れ	(3) 列同士を入れ
35	下 2	(b) $\cos(\theta)$	(b) $\cos \theta$
40	下6行	座標系基本ベクトルは	基本ベクトルは
58	5 行	<i>a</i> を定ベクトルとして,	a = (a, b, c) を定ベクトルとして,
60	下 2-3 行	式 (A.3) より $\Delta f = \nabla f \cdot \Delta r + \varepsilon \Delta r $ であり、 $ \Delta r \to 0$ の極限において $\varepsilon \to 0$ となる.	式 $(A.3)$ より $\Delta f = \nabla f \cdot \Delta r + \eta \Delta r $ であり、 $ \Delta r \to 0$ の極限において $\eta \to 0$ となる.
81	9 行	ラプラシアン ⁽³⁾	をラプラシアン ⁽³⁾
100	式 (3.26)	$ \begin{vmatrix} I = \\ V_0 \frac{I_0(\omega)e^{j\omega t} - I_0(-\omega)e^{-j\omega t}}{2j} \end{vmatrix} $	$I = \frac{I_0(\omega)e^{j\omega t} - I_0(-\omega)e^{-j\omega t}}{2j}$
	式 (3.27)	$I = V_0 \frac{I_0(\omega)e^{j\omega t} + I_0(-\omega)e^{-j\omega t}}{2}$	$I = \frac{I_0(\omega)e^{j\omega t} + I_0(-\omega)e^{-j\omega t}}{2}$
101	2 行	式 (3.24) の特解を用いた方法,	式(3.24)の特解を複素数を用いた方法,
109	下2行	コーシーの積分定理の被積 分関数の正則性の条件は $\oint f(z)dz = 0$ であるための十 分条件であり、必要条件ではない。	コーシーの積分定理における $\oint f(z)dz = 0$ の条件は、被積 分関数が正則であるための必要条件であり、十分条件ではない.
132	3行 下6行 下5行 下5行	$2\pi n = 0$, 第 1 象限 第 4 象限 $\lim_{argz \to 2\pi + 0} w(z)$	2π , $n = 0$, 第 4 象限 第 1 象限 $\lim_{argz \to +0} w(z)$
170	式 (A.10) 式 (A.11)	$f\{x(u, v), y(u, v)\}\$ $f\{x(u, v, w), y(u, v, w),\$ $w(u, v, w)\}$	f(x(u, v), y(u, v)) f(x(u, v, w), y(u, v, w), z(u, v, w))
171	式 (A.14)	$= \oint_{\mathcal{C}} g\{x(y), y\} dy$	$= \oint_C g(x(y), y) dy$
176	式(A.22b)	$h_{\phi}=r$	$h_\phi= ho$
184	8行	$\frac{r^2 \sin \theta}{r^3}$	$\frac{r^3 \sin \theta}{r^3}$
185	下8行	$\frac{a}{z-1} + \frac{b}{z} + \frac{c}{z^2}$	$\frac{a}{z} + \frac{b}{z^2} + \frac{c}{z - 1}$