「電気機器工学II [2版改訂]」(1刷)正誤表

頁	行	誤	正
8	図1.7	急性抵抗領域	負性抵抗領域
25	式(2.8) 式(2.10)	$\frac{\mathrm{d}}{\mathrm{d}t}$ [各式に 2 箇所あり]	$\frac{\mathrm{d}}{\mathrm{d}\theta}$
25	式(2.14)	$\sqrt{2}\cos\theta$	$\sqrt{2}E\cos\theta$
51	図 3.15	正群 インバータ 整流器 負群 阻 止	正群 阻止 整流器 12パータ 負群 12パータ 阻止
82	下9	$V\sin\delta = I_d X_d \qquad V\cos\delta = I_q X_q$	$V\sin\delta = I_q X_q \qquad V\cos\delta = K\phi_0 \omega + I_d X_d$
82	下7	$ T = K\phi_0 I + \cdots = K\phi_0 I + \cdots $ $= K\phi_0 I + \phi_d I_q - \phi_q I_d $	$ T = K\phi_0 I_q + \cdots = K\phi_0 I_q + \cdots $ $= K\{\phi_0 I_q + \phi_d I_q - \phi_q I_d\} $
83	式(4.28)	τ=	τ=
		$=K(\phi_0\cos\beta_0)I-\phi_dI_q+\phi_qI_d$	$=K\{(\phi_0\cos\beta_0)I-\phi_dI_q+\phi_qI_d\}$
87	上4	E_1	V_0
87	式(5.2)	$I_{1} = \frac{V_{1}}{(r_{1} + \omega_{1}A) + j(\omega_{1}B)} = I_{1} ^{-j\theta_{1}}$	$I_{1} = \frac{V_{1}}{(r_{1} + \omega_{1}A) + j(\omega_{1}B)} = I_{1} e^{-j\theta_{1}}$
109	下8	負荷電流 I。がに	負荷電流が I_b に
113	下4	平均值 Ls	平均值 I_s
118	図 6.12	(b) v ₂	(b) v_1
		(d) v_{T1}	(d) i_{T1}
		(h) i_2	(h) i_1
120	下1	電流 i の実効値を I とすると	電流 i にはつぎの関係がある。
121	式(6.22)	$+\mathrm{j}\left(\chi I_{P}+\gamma I_{Q}\right)$	$+\mathrm{j}\left(\chi I_{P}-\gamma I_{Q}\right)$
134	下6	P_0-P_2	P_1-P_2